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Part I
World and representation





Chapter 1
The world and the mind

We often confuse the world with our mental representation of the world itself. Is this
a correct assumption?

1.1 Frames of mind

Following social theory, a frame is a schema of interpretation, a collection of anec-
dotes and stereotypes, that individuals rely on to understand and respond to events
[5]. People build a series of mental representations of the world through biological
and cultural influences. They then use these filters to make sense of the world. The
choices people make are influenced by frames. Participation in a language commu-
nity necessarily influences an individual’s perception of the meanings attributed to
words or phrases.

Example 1.1 (The car accident) In [8] two experiments are reported in which subjects
viewed films of automobile accidents and then answered questions about events
occurring in the films. The question, “About how fast were the cars going when they
smashed into each other?” elicited higher estimates of speed than questions which
used the verbs collided, bumped, contucted, or hit in place of smashed. On a retest
one week later, those subjects who received the verb smashed were more likely to
say “yes” to the question, “Did you see any broken glass?”, even though broken
glass was not present in the film. These results are consistent with the view that the
questions asked subsequent to an event can cause a reconstruction in one’s memory
of that event” (Quote from the abstract of [8]).

Example 1.2 (The Asian disease problem) Tversky and Kahneman [6] demonstrated
systematicity when the same problem is presented in different ways, for example
in the Asian disease problem. Participants were asked to "imagine that the U.S. is
preparing for the outbreak of an unusual Asian disease, which is expected to kill
600 people. Two alternative programs to combat the disease have been proposed.
Assume the exact scientific estimate of the consequences of the programs are as

3



4 1 The world and the mind

follows." The first group of participants was presented with the following choice. In
a group of 600 people,

• Program A: "200 people will be saved";
• Program B: "there is a 1/3 probability that 600 people will be saved, and a 2/3

probability that no people will be saved"

72% of the participants preferred program A, 28%, opted for program B. The second
group of participants was presented with a different choice. In a group of 600 people,

• Program C: "400 people will die";
• Program D: "there is a 1/3 probability that nobody will die, and a 2/3 probability

that 600 people will die"

In this decision frame, 78% preferred program D, with the remaining 2% opting for
program C. Programs A and C are identical, as are programs B and D. The change
in the decision frame between the two groups of participants produced a preference
reversal: when the programs were presented in terms of lives saved, the participants
preferred the secure program, A (= C). When the programs were presented in terms
of expected deaths, participants chose the gamble D (= B).[4].

1.2 Optical Illusions

An optical illusion, or visual illusion, occurs when the visual system creates a per-
ception that seems different from the surrounding reality. The main categories of
illusions are physical, physiological and cognitive, each with types such as ambigui-
ties, distortions, paradoxes and fictions. Examples include the apparent curvature of a
stick in water (physical distortion), the effect of adapting to movement (physiological
paradox), and the residual impression of an image (physiological fiction). Patholog-
ical visual illusions result from pathological changes in physiological mechanisms
and can lead to visual hallucinations. These illusions can be used in the monitoring
and rehabilitation of psychological disorders such as phantom limb syndrome and
schizophrenia.

Example 1.3 (Herman Grid) A demonstration of how our perception can deceive
us is Herman Grid [1], which is an optical illusion in which a grid of white dots
on a black background appears to create dark spots at the points of intersection.
Although we know that there are no spots actually present, our perception tricks
us into believing that they are present. This example demonstrates how our visual
perception (and so our senses) can deviate from objective reality.
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Fig. 1.1 Herman Grid

Example 1.4 (Kanizsa triangle) The illusion consists in the fact that looking at the
image we hallucinate to see two triangles and 3 circles, but actually none of them is
there.

Fig. 1.2 Kanizsa Triangle

Example 1.5 (Pareidolia) Pareidolia is the tendency for perception to impose a mean-
ingful interpretation on a nebulous stimulus, usually visual, so that one sees an object,
pattern, or meaning where there is none. For example, we tend to see faces every-
where, even in the surface of the Moon.

Fig. 1.3 Pareidolia
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Example 1.6 (My Wife and My Mother-in-Law) This is a famous optical illusion in
which viewers can see either a young woman looking away or an old woman in
profile, depending on how they interpret the drawing’s lines. The illusion plays on
our ability to switch between different perspectives.

Fig. 1.4 My Wife and My Mother-in-Law

Example 1.7 (Impossible Trident) Also known as the "blivet", this illusion depicts a
three-pronged trident that mysteriously transforms into two cylindrical shafts at the
other end. This illusion plays with our perception of three-dimensional space.

Fig. 1.5 Impossible Trident

Example 1.8 (Rubin’s Vase) This is a classic example of figure-ground perception.
Viewers can either see a vase in the center or two faces in profile facing each other.
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The brain can switch between either interpretation but cannot see both at the same
time.

Fig. 1.6 Rubin’s Vase

Example 1.9 (Penrose Triangle) This is an "impossible object" that cannot exist in
three-dimensional space. It appears to be a solid object made of three straight beams
of square cross-section, but its construction is impossible.

Fig. 1.7 Penrose Triangle

1.3 Mind Fallacies

A fallacy is reasoning that is logically invalid, or that undermines the logical validity
of an argument. All forms of human communication can contain fallacies. The use
of fallacies is common when the speaker’s goal of achieving common agreement is
more important to them than utilizing sound reasoning.
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Fallacies can be classified depending on their structure (formal fallacies) or on
their content (informal fallacies). A formal fallacy, also called a deductive fallacy or
logical fallacy [2], represents a type of reasoning that loses validity due to a flaw in
its logical structure. This flaw can be clearly represented within a standard logical
system, such as propositional logic. In other words, it is a deductive argument that
is invalid. Even though the premises of the argument might be true, the conclusion
drawn from it is still false. Informal fallacies, the larger group, may then be subdivided
into categories such as improper presumption, faulty generalization, and error in
assigning causation and relevance, among others.

We provide below various examples of informal and formal fallacies.

Example 1.10 (Cognitive Bias) Cognitive biases [12] are an example of informal fal-
lacies. They represent systematic patterns of deviation from the norm and rationality
in the evaluation process. The Asian disease example, see above, is an instance of
cognitive bias.

Example 1.11 (Misconceptions) Misconceptions are informal fallacies. A common
misconception is a perspective or data that is often considered to be true but is actually
false. Usually, such misunderstandings stem from entrenched traditions (such as
gossipy tales), stereotypes, superstitions, fallacies, misinterpretations of science, or
the spread of pseudoscience. Some of these misunderstandings are considered urban
legends and often contribute to moral alarmism.

Example 1.12 (Cognitive Distortion) Cognitive distortions are an informal fallacy.
They can be traced to "thinking fallacies," representing irrational or distorted ways
through which we process information and perceive reality. Some of the main think-
ing fallacies involved include

• overgeneralization, which draws overly broad conclusions from a single negative
event;

• mental filtering, which focuses attention only on the negative aspects of a situation;
• over-labeling, which assigns negative labels to oneself or others based on mistakes

or failures;
• dichotomous thinking, which considers only extremes without acknowledging

nuance;
• emotional reasoning makes one believe that one’s feelings reflect objective reality;
• personalization leads one to interpret events as being directly related to oneself;
• Negative prediction involves predicting the worst without concrete evidence;
• Catastrophism makes one imagine the worst as the only possibility, ignoring

alternatives, while sample selection draws general conclusions from a limited set
of data or experiences.

Example 1.13 (Paradoxes) Paradoxes are examples of formal fallacies. Paradoxes are
situations or statements that seem contradictory or contraintuitive, often challenging
our normal thinking and expectations. They are intellectual puzzles that can cause
confusion and amazement as they violate our common understanding of logic or the
laws of reality.



1.4 So What? 9

Some paradoxes emerge from fallacious reasoning, where it appears that rules
of thought are correctly applied, but the end result is nonetheless contradictory or
nonsensical. These paradoxes teach us the importance of carefully examining the
premises and inferences behind an argument.

Conversely, there are paradoxes that emerge from complex situations or situations
that fall into categories of mathematical or philosophical problems. These paradoxes
can challenge our intuition and reveal the limitations of our knowledge. In some
cases, these paradoxes can highlight deep issues in the very structure of our rational
thinking.

A particular type of paradoxes, called antinomies, is characterized by the pres-
ence of self-contradictions in situations where we would expect consistency. These
paradoxes can be used to highlight the inherent challenges in dealing with concepts
such as truth, description or infinity.

Example 1.14 (The Map - Territory confusion) The map-territory relationship [7] is
a fundamental concept for understanding the fallacies of the human mind. Essen-
tially, it points out that the mental representations we create, such as concept maps,
models and interpretations, are not identical to the reality they seek to represent.
This concept detects several distortions in the perception and interpretation of hu-
man reality. For example, people often generalize and make incorrect conclusions
based on limited experiences, confirming their own biases and ignoring conflicting
information. Cultural beliefs influence mental maps, leading to distorted perceptions.
Cognitive distortions and overconfidence in representations can lead away from ob-
jective reality. In summary, understanding the map-territory relationship prompts us
to be aware of discrepancies between our mental representations and actual reality,
helping us to avoid wrong thinking traps and maintain a critical perspective.

1.4 So What?

In this chapter, we explored the inherent flaws in human thinking, such as fallacies,
biases and misconceptions, which can affect our understanding of reality and decision
making. However, we can adopt several strategies to overcome these challenges and
promote more accurate, rational and logic-based thinking.

Logic is a crucial tool for avoiding fallacious reasoning. Formalizing thinking
through logic provides us with a structured framework for evaluating arguments and
drawing conclusions. The systematic approach of logic helps us recognize and foil
fallacious reasoning. Learning to identify the premises, inferences and conclusions
in an argument enables us to detect logical errors or inconsistencies. This is key in
Computer Science and even more in Artificial Intelligence.





Chapter 2
Representations

The various types of fallacies described in Section 1.3 raise the issue of whether
it is possible to deal with them. But why? To deal in which sense? Modulo some
extreme cases, humans and humanity have been able to develop well and grow in
time despite the pervasiveness of fallacies in human interactions with the world and
with others. Two are the main reasons underlying this work. The first is that, because
of the Web and social platforms, now humans are able to interact with people that
are hardly known and with very different cultures and, furthermore, they get in
contact with parts of the world that they never visited physically. The probability
of misalignments and misunderstandings among people has grown immensely. The
second is that, in this era where we want to build CS and AI systems which are more
and more complex, more and more intelligent, and which pervasively interact with
people in their everyday lives, we need to have systems which are robust, trustable,
and whose behaviour we fully understand and also control.

The first step is to find a way to build representations of the world which are
not ambiguous and which can be used as the basis for solving the interpretations
problems highlighted in Section 1.3. This is the gaal of this section.

2.1 The Semantic Gap

Living organisms perceive reality, what we call the world, through the lenses of their
perceptions organs. This process is not neutral. Different species and even different
humans perceive the world differently. We talk of Semantic Gap relating to the
impossibility for humans and machines to perceive the world as it really is, or even
in the same way. The Semantic Gap is the source of the pervasive misalignment of
the mental models of the world that humans, and also machines, build.

Intuition 2.1 (World) The world is what we perceive through the five senses and
assume it exists. It is the spatio-temporal dimension in which humans live and interact
with other humans and everything else around them.

11



12 2 Representations

Fig. 2.1 The 5 Senses: sight, hearing, touch, taste and smell.

Intuition 2.2 (Memory) When we perceive the world we create in our mind a
memory of what we have perceived, the memory being itself a part of the world.

Intuition 2.3 (Mental Representations) Mental representations are a part of a
person’s memory. Mental representations are such that there is a correspondence
between their contents and what is the case in the world they describe.

Fig. 2.2 Mental Representations.

Observation 2.1 (Mental representations) All humans have their own mental rep-
resentations of the world. They are a fundamental mechanism enabling human knowl-
edge, reasoning, action and communication.

Intuition 2.4 (Semantic gap) The semantic gap is the difference between the world
and a human’s mental representation of the world itself, what (s)he has perceived.

Observation 2.2 (Semantic gap) Most of the details of how perception and memory
operate and how the different processes compose to generate memories is largely
unknown. However we know that our memories are an encoding of what we perceive
and that this encoding is partial and not faithfully representing what caused it.

2.2 Mental Representations

We have two types of mental representations.

Intuition 2.5 (Analogical mental representations) Analogical mental represen-
tations are mental representations that depict the world as we perceive it through
the five senses.
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Example 2.1 (Analogical mental Representations) We see an apple, we smell its
fragrance, we taste it when eating.

Observation 2.3 (Analogical mental representations) Analogical mental repre-
sentations enable us to acquire information about the world, directly from the world.
They are used to act in the world, to learn from what has been previously perceived
and to build an understanding of the world itself.

We describe analogical mental representations using languages. We use languages
to build mental linguistic representations about the world, as represented in mental
analogical representations.

Intuition 2.6 (Language) A language is any notation, generated by humans, agreed
upon by humans, which allows to describe analogical representations, to reason
about them, and to communicate about them to other humans.

Intuition 2.7 (Linguistic mental representations) Linguistic mental represen-
tations are mental representations that describe mental analogical representations
using language.

Example 2.2 (Linguistic mental representations, language) The most important ex-
ample of languages used in linguistic mental representations are the natural lan-
guages, e.g., Italian, and English, as memorized in our mind. Examples of linguistic
mental representations are a poem and, in general, any piece of text describing the
world that we remember.

Observation 2.4 (Linguistic mental representations) Linguistic mental represen-
tations are used to describe what is happening in analogical mental representations.
They allow to communicate to other humans about our mental representations (and,
thus, indirectly about the world), to learn from what has been previously described
or perceived, and to reason in order to to derive unknown facts from what we already
know.

Intuition 2.8 (Represent, depict, describe) To represent the world means anyone
of two things: to depict it or to describe it.

Observation 2.5 (Analogical and linguistic mental representations) Analogical
representations depict the world. Linguistic describe (the analogical representations
of the world). They both represent the world.
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Fig. 2.3 Diagram of Mental Representations

Observation 2.6 (Partiality of mental representations) Because of the semantic
gap, mental representations never describe the world completely. This has conse-
quences. First, there are indefinitely many analogical mental representations that
describe the same real world situation. Similarly, there is an indefinite number of
linguistic mental representations for the same analogical representation.

Observation 2.7 (Number of mental representations) Because of partiality there
are indefinitely many analogical mental representations that describe the same real
world situation. Furthermore, there is an indefinite number of linguistic mental
representations for the same analogical representation.

Observation 2.8 (Diversity of mental representations) Because of partiality, any
two mental representations are necessarily different, depending on the spacetime
coordinates under which they are generated, and the purpose of the person who
generates them

Example 2.3 (Diversity of mental representations) Two people describing the same
trip would do it so differently. For example, one person might have a partial and
rough mental representation of the city, based mainly on a few famous tourist sites
and the positive experiences he had during the trip. While the other person might
have a different mental representation focused on other aspects of the city. She might
remember the difficulties she encountered in finding the right way, some less pleasant
experiences with locals or bad weather during the trip. Her mental representation
might be more influenced by these less positive aspects.

Intuition 2.9 (Consistency and inconsistency of mental representations) We say
that any two mental representations are inconsistent when it is impossible for those
two mental presentations to represent the (same part of the) world, as he know it.
Consistency means absence of inconsistency. Two consistent mental representations
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are still diverse but they are compatible in the sense that there is a (analogical
representation of the) world which is described by both.

Example 2.4 (Inconsistency of mental representations) It is impossible to have two
different objects (e.g., two cats) exactly in the same place in the same moment or
the same object (a cat) in two different places in the same moment. Similarly, given
an object, certain properties (e.g., being of color blue) prevent other properties from
holding (e.g., being red), again in the same moment.

Observation 2.9 (Subjectivity of mental representations) Given the world they
perceive, humans build one or more among the many possible mental analogical
and linguistic representations of what they have perceived. Each individual has a
unique and personal perspective on the world, influenced by different experiences,
knowledge and viewpoints.

Observation 2.10 (Subjectivity vs. objectivity of mental representations) Hu-
mans may confuse the real world with their mental representations. A consequence
is the assumption that (their mental representation of) the world is the same for
everybody. Would this be the case would all be living in the same (mental represen-
tation of the) world. Because of subjectivity, this assumption turns out to be wrong.

Observation 2.11 (Subjectivity, inconsistency and objectivity) Two subjective
mental representations may be (mutually) inconsistent. The presence of inconsis-
tency provides evidence of the subjectivity of the mental representations involved.

2.3 Representations

The subjectivity and heterogeneity of mental representations raises some important
questions. Is it possible to guarantee that the mental representations of different
people are the same? Or, at least, that they are not mutually inconsistent and also
similar enough in some key features, in particular those which are relevant to the
problem to be solved? How do we enforce or at least facilitate the construction of
similar mental representations

Intuition 2.10 (Representations) A representation is a part of the world, developed
by the mind of a human, that represents that human’s mental representation, and is
made accessible, via one of the five senses, to other humans.

As for mental representations, we have two types of representations.

Intuition 2.11 (Analogical Representations) Analogical representations depict
analogical mental representations.

Intuition 2.12 (Linguistic Representations) Linguistic representations describe
linguistic mental representations.
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Example 2.5 (Representations) The following are examples of representations:

1. Any written natural language text is a linguistic representation, which can be
generated on multiple media, for instance, paper, media, projection on a screen;

2. Any spoken natural language stream is a linguistic representation, which can be
registered on transcribed on paper;

3. All forms of art, e.g., drawings, statues, paintings, music, monuments, are ana-
logical representations.

Example 2.6 (Linguistic and analogical mental representations)

• There is a tree
• There is a banana
• The monkey is eating a banana
• The monkey is sitting on a tree
• The monkey is scratching his head

Observation 2.12 (Partiality, number, diversity, (in)consistency, subjectivity
and objectivity) Observations 2.6 on the partiality, 2.7 on the number, 2.8 on
the diversity and 2.9 on the inconsistency of mental representations apply also to
representations. Not being in the mind of people, representations cannot be said to
be subjective or objective. The question is about the mental representations they
generate.

Observation 2.13 (From mental representations to representations to mental
representations) The process and consequences of generating representations is well
represented in the analogical representation in Figure 2.4. That is: the representation
is generated by a single person starting from his/her mental representation and in
turn it generates new mental representations in the minds of the people looking at it.

Fig. 2.4 From Mental Representations to Representations and back.

Observation 2.14 (From mental representations to representations) Represen-
tations, by their own nature and purpose, are such that there is a correspondence
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between their contents and those of the mental representations they describe. This is
why people generate them.

Fig. 2.5 Diagram of Representations

Observation 2.15 (From representations to mental representations) There is no
guarantee that a representation generates similar subjective mental representations.
Think for instance of the many different interpretations, impressions, feelings that a
piece of art generates.

Fig. 2.6 Diagram of Representations
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2.4 Exercises

Exercise 2.1 (Linguistic and analogical mental representations) Create a linguis-
tic representation for the analogical mental representation in Figure 2.1.

Fig. 2.7 Monkey and banana.

Exercise 2.2 (Linguistic and analogical mental representations) Create an ana-
logical representation for this linguistic mental representation. The phrases are writ-
ten in Tswana, a language spoken in southern Africa.

• Mongwe le mongwe o tshela mo
• lafatsheng la gagawe go ya ka kitso
• ya gagwe le go ya ka seo a se lemogang.
• Maitemogelo a tlhola seo, puo e letlelela
• go arologana tlhaloso
• le batho ba bangwe, ka moo



Chapter 3
Models and assertional theories

Observation 2.15 may suggest that there is no solution to the problem of subjectivity
of mental representations. However this is not the case. The key observation is
that representations are built by humans with the specific purpose of making mental
representations of the same representation converge as much as possible, minimizing
in particular the probability of inconsistencies. The question to be answered is how
to build such representations.

3.1 Models

The starting point is analogical mental representations, as our representations start
from here. Consider the following example.

Example 3.1 (What is in an analogical representation) Consider the analogical rep-
resentation depicted in the image in Figure 3.1. We can see three people, that we can
assume have names Paolo, Stefania and Sofia, that they are friends, various dogs,
the fact that they are one at the right of the other, and of course much more.

Fig. 3.1 An analogical representation of an everyday situation.

19



20 3 Models and assertional theories

Observation 3.1 (Analogical representations as sets of facts) Any analogical rep-
resentation, for instance that in Figure 3.1, always depicts various objects, e.g.,
Sofia, which belong to certain classes, e.g., "Sofia is a person", with certain prop-
erties articulated at various levels of complexity, e.g., "Sofia has blond hair", which
are doing things, e.g., "Sofia is walking", and are engaged in certain relations with
other objects, e.g. "Sofia is a friend Paolo and she is now interacting with her dogs".
Despite their heterogeneity, all the statements above share the fact that they describe
a certain state of affairs in the world. We call these statements facts. Any analogical
representation can be thought of as a set of facts. We call analogical representations
described as sets of facts, models

Intuition 3.1 (Fact) A fact f is something happening at certain spacetime coordi-
nates.

Definition 3.1 (Model) A model M is a set of facts F = {f}

M = {f} (3.1)

Observation 3.2 (Facts and models) Facts are the atomic, not further decompos-
able, elements of a model. Note that, contrary to models, facts are taken as a primitive
notion and therefore cannot be formally defined

Example 3.2 (The facts of a model represented in Figure 3.1) A model, one among
many others, of the situation represented in Figure 3.1 could for instance contain the
following facts :

Sofia is a person Paolo is a man
Rocky is a dog Sofia is near Paolo
Sofia has blond hair Sofia is a friend of Paolo
Rocky is an animal Rocky is the dog of Sofia
...

Observation 3.3 (The subjectivity of facts) Facts are what is observed and is also
described, e.g., to third parties. The problem is that, just because of what discussed
in Section 2.2 and, specifically what facts are is subjective and hidden in the minds of
people who perceive them. How many more and/or different facts from those listed
in Example 3.2 could you think of? Indefinitely many! Notice that any fact can be
decomposed in any set of simpler facts if this is the current focus of the observer.
So, for instance, instead of focusing on Sofia I could focus on her hair, or legs or . . .

Observation 3.4 (Mutually (in)consistent facts in a model) The model of Example
3.2 could be extended to assert the fact that Sofia is a woman or that Paolo is a
person. We would however have problems extending it by adding the fact that Paolo
is a woman, or that Sofia is a dog, as we would have two mutually inconsistent
facts, something that we know cannot happen in the world as we perceive it. See
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also Observation 2.9. A model cannot contain facts which, at least intuitively. are
mutually inconsistent. Beyond this simple example, the issue is how to formalize
this intuition and then how to be able to detect it by reasoning about models.

Observation 3.5 (Facts and assertions) A fact, to be a fact, must be linguistically
described as such. It is not by chance that in Example 3.2 we pointed to facts via a set
of natural language descriptions. We call such descriptions, assertions. The simplest
way to think of an assertion is as a declarative natural language sentence articulated
in terms of a subject being in some more or less complex relation with an object (as
in, e.g., "Stefania is walking with the dogs towards the city center"), or of a subject
holding a certain more or less complex property (as in, e.g., "Stefania has blond long
hair").

3.2 Assertional theories

Observation 3.6 (Assertions and assertional theories) Assertions are indivisible,
we say atomic, descriptions of fact. Assertional theories are descriptions of models

Intuition 3.2 (Assertion) An assertion 𝑎 is an atomic linguistic representation of
some fact f.

Definition 3.2 (Assertional theory) An assertional theory TA is a set of assertions
TA = {𝑎}

TA = {𝑎} (3.2)

We need to state that an assertion is the description of a specific fact and, more in
general, that an assertional theory describes a model.

Example 3.3 (An assertional theory of the model represented in Figure 3.1) An
assertional theory, one among many others, describing the facts from Example 3.2
in natural language could be, for instance:

Sofia è una persona Paolo è un uomo Rocky è un cane
Sofia è vicina a Paolo Rocky è il cane di Sofia Sofia è un’amica di Paolo
Rocky è un animale Sofia ha i capelli biondi . . .

As can be seen, the assertional theory is in Italian, since being in natural language it
can also be expressed in this way, and it could equally be expressed in English.

3.3 Interpretation functions

Definition 3.3 (Interpretation function) Let I𝐴 be an interpretation function of
an assertional theory, defined as
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I𝐴 : TA → M. (3.3)

We say that a fact f ∈ M is the interpretation of 𝑎 ∈ I𝐴, and write

f = I𝐴(𝑎) = 𝑎I𝐴 (3.4)

to mean that 𝑎 is a linguistic description of f. We say that f is the interpretation of
𝑎, or, equivalently, that 𝑎 denotes f.

Observation 3.7 (Interpretation function, polysemy) I𝐴 is assumed to be a func-
tion, that is, for any fact there is only one assertion describing it. In fact, we must
guarantee that, if two facts 𝑓1 and 𝑓2 are different then they cannot both be the result
of the interpretation of the same assertion 𝑎, i.e., it cannot be that if I𝐴(𝑎) = 𝑓1
then also I𝐴(𝑎) = 𝑓2. This phenomenon, called polysemy is pervasive in natural
languages and it is one of the main sources of misunderstandings and, therefore, of
the construction of diverging mental representations of the same representation. The
polysemy of assertions arises directly from the polysemy of words. As examples: the
proper name Java has three meanings, that is, it is a programming language, a type
of coffee beans, and an island. The word car ha various meanings. For instance it
may mean automobile or a car part of of a train. General words, such as to do have
more than ten meanings. Polysemy is common to most words, in particular with
those words which are most commonly used (people tend to give words their own
specific meaning) and it is one of the major complications (not the only one) which
arise when building natural language understanding systems.

Observation 3.8 (The non ambiguity of interpretation functions) As from Sec-
tion 1.3 linguistic descriptions are ambiguous. As from Observation 3.7, one of the
main reasons is the polysemy of words. However this ambiguity is in the mind of the
listener/reader. The speaker/writer can be assumed to always have in mind the unique
analogical representation (s)he is describing. The notion of interpretation function
enforces this assumption forcing the speaker/writer to be explicit about the intended
meaning.

Observation 3.9 (Interpretation function, synonymity) Two assertions are syn-
onyms when they have the same meaning, that is, the interpretation of two different
assertions 𝑎1 and 𝑎2, may denote the same fact 𝑓 , i.e., I𝐴(𝑎1) = I𝐴(𝑎2) = 𝑓 .
Synonymous words are again pervasive in natural languages, in particular with the
most common entities. People, and entities in general, have multiple names, e.g.,
name, surname, name plus surname, nicknames, which are synonymous. Multiple
languages generate multiple names of the same entity (e.g., Great Britain, Gran Bre-
tagna). There are also synonymous nouns, for instance car and automobile. Notice
how the word car is both polysemous and synonymous. This is again quite common.
In general synonymity is not a problem. However, in relational databases synonymity
is not allowed, essentially for efficiency reasons. Databases are developed based on
the unique name assumption, that is, in databases, different strings and assertions
always mean different things.
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Example 3.4 (An interpretation function providing an interpretation of the asser-
tional theory describing Figure 3.1) . The natural interpretation function which
interprets the sentences in Example 3.3 (left) to the facts in Example 3.2 (right) is

I𝐴(Sofia è una persona) = Sofia is a person
I𝐴(Paolo è un uomo) = Paolo is a man
I𝐴(Rocky is a dog) = Rocky is a dog
I𝐴(Sofia is near Paolo) = Sofia is near Paolo
I𝐴(Rocky è il cane di Sofia) = Rocky is the dog of Sofia
I𝐴(Sofia è un’amica di Paolo) = Sofia is a friend of Paolo
I𝐴(Rocky è un animale) = Rocky is an animal
I𝐴(Sofia ha i capelli biondi = Sofia has blond hair
. . .

Observation 3.10 (Assertions and facts, subjectivity) The problem of the subjec-
tivity of representations remains, this being an unavoidable fact of life. However the
notions of fact, assertion and interpretation function give leverage. First, facts are
assumed to be unequivocally described, via interpretation functions, by assertions
where, in turn, are linguistic representations and, as such, can be shared. Second,
assertions, though subjectively selected by humans, are assumed to be atomic, that
is, to provide the minimal possible level of details at which a model can be described.

Fig. 3.2 Diagram of Representations





Chapter 4
Formal models and assertional theories

In order to avoid fallacious reasoning we need to represent models and assertional
theories in a unambiguous, that is formal, way. Four are the features of of interest to
us:

• Formality: It should be a logical language, that is, with well defined syntax and
semantics;

• Universality: it should be able to represent all types of facts;
• Intuitiveness: it should allow for assertions whose basic elements (entity names,

concepts and properties) as well as their structure (that is how the basic elements
are connected together to build assertions) should be, on one side, intuitive to
people while, on the other side, have a direct map to the structure and organization
of the reference domain;

• Computational efficiency: L𝐴 should allow for a fast and efficient inference
engine, exploiting the inherent efficiency of the data structures used to memorize
the world model.

Observation 4.1 (Types of assertional languages) ER and UML models are intu-
itive but not universal, they represent only knowledge facts. DBs are computationally
efficient but represent only data facts. Natural language is universal but its semantics
are not formally defined and it is not computationally efficient. The latter weakness
extends to well defined subsets of natural languages. As an instance of this case,
logical languages are universal with well defined syntax and semantics but they are
not intuitive to understand and also computationally not efficient (see also Section
6.5).

In Section 4.1, we introduce some basic definitions of set theory, useful in order to
define D, while, in Section 4.2, we introduce some basic definitions of graph theory
useful in order to define L𝐴.

25
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4.1 Set theory

4.1.1 Basic definitions

We can define sets in two ways

• Listing: The set is described by listing all its elements (for instance, 𝐴 =

{𝑎, 𝑒, 𝑖, 𝑜, 𝑢}).
• Abstraction: The set is described through a property of its elements (for instance,

𝐴 = {𝑥 |𝑥 is a vowel of the Latin alphabet}).

We have the following basic definitions.

Definition 4.1 (Empty Set) ∅ is the set containing no elements.

Definition 4.2 (Membership) 𝒂 ∈ 𝑨, element 𝒂 belongs to the set 𝑨.

Definition 4.3 (Non-membership) 𝒂 ∉ 𝑨, element 𝒂 doesn’t belong to the set 𝑨.

Definition 4.4 (Equality) 𝑨 = 𝑩, if and only if 𝑨 and 𝑩 contain the same elements.

Definition 4.5 (Inequality) 𝑨 ≠ 𝑩, if and only if it is not true that 𝑨 = 𝑩.

Definition 4.6 (Subset) 𝑨 ⊆ 𝑩, if and only if all elements in 𝑨 also belong to 𝑩.

Definition 4.7 (Proper Subset) 𝑨 ⊂ 𝑩, if and only if 𝑨 ⊆ 𝑩 and 𝑨 ≠ 𝑩.

Definition 4.8 (Universal Set) The universal set is the set of all elements or members
of all related sets and is denoted by the letter U .

We use Venn diagrams to represent sets. Venn diagrams consist of overlapping
or intersecting circles representing sets and their relationships. Each circle repre-
sents a specific set, and the area where the circles overlap represents the elements
shared between the corresponding sets. An element that does not belong to a set is
represented as a dot outside the circle representing the set.

𝐴 𝐵

𝐻

Fig. 4.1 Union set operation

Definition 4.9 (Union) Given two sets 𝑨
and 𝑩, the union of 𝑨 and 𝑩 is defined as
the set containing the elements belonging
to 𝑨 or to 𝑩 or to both, and is denoted
with 𝑨 ∪ 𝑩.
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Definition 4.10 (Intersection) Given
two sets 𝑨 and 𝑩, the intersection of
𝑨 and 𝑩 is defined as the set containing
the elements that belong both to 𝑨 and
𝑩, and is denoted with 𝑨 ∩ 𝑩.

𝐴 𝐵

𝐻

Fig. 4.2 Intersection set operation

𝐴 𝐵

𝐻

Fig. 4.3 Difference set operation

Definition 4.11 (Difference) Given two
sets 𝑨 and 𝑩, the difference of 𝑨 and
𝑩 is defined as the set containing all the
elements which are members of 𝑨, but
not members of 𝑩, and is denoted with
𝑨 \ 𝑩.

Definition 4.12 (Complement) Given a
universal set 𝑼 and a set 𝑨, where 𝑨 ⊆

𝑼, the complement of 𝑨 in 𝑼 is defined
as the set containing all the elements in𝑼
not belonging to 𝑨, and is denoted with
𝑨𝒄 or 𝑼 \ 𝑨.

𝐴

𝐻

𝑈

Fig. 4.4 Complement set operation

Theorem 4.1 (Properties of Operations)

• With same set

– 𝐴 ∩ 𝐴 = 𝐴

– 𝐴 ∪ 𝐴 = 𝐴

• Commutative

– 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

– 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴

• Empty set

– 𝐴 ∩ ∅ = ∅
– 𝐴 ∪ ∅ = 𝐴

• Associative

– (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶)
– (𝐴 ∪ 𝐵)∪ = 𝐴 ∪ (𝐵 ∪ 𝐶)

• Distributive

– 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶);
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– 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)

• De Morgan laws

– 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵

– 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵

4.1.2 Relations

Definition 4.13 (Cartesian product) Given two sets 𝑨 and 𝑩, the Cartesian product
of 𝑨 and 𝑩 is defined as the set of ordered couples (𝒂, 𝒃) where 𝒂 ∈ 𝑨 and 𝒃 ∈ 𝑩,
formally:

𝐴 × 𝐵 = {(𝑎, 𝑏) : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

Example 4.1 (Cartesian product) Given 𝐴 = {1, 2, 3} and 𝐵 = {𝑎, 𝑏}, then

𝐴 × 𝐵 = {(1, 𝑎), (1, 𝑏), (2, 𝑎), (2, 𝑏), (3, 𝑎), (3, 𝑏)}
𝑎𝑛𝑑

𝐵 × 𝐴 = {(𝑎, 1), (𝑎, 2), (𝑎, 3), (𝑏, 1), (𝑏, 2), (𝑏, 3)}

Definition 4.14 (Relation) A relation R from the set 𝐴 to the set 𝐵 is a subset of the
Cartesian product of 𝐴 and 𝐵: 𝑅 ⊆ 𝐴 × 𝐵.
If (𝑥, 𝑦) ∈ 𝑅, then we will write 𝑥𝑅𝑦 and we say ’x is R-related to y’.

Proposition 4.1 A binary relation on a set A is a subset 𝑅 ⊆ 𝐴 × 𝐴.

Given a relation R from A to B:

• the domain of R is the set 𝐷𝑜𝑚(𝑅) = {𝑎 ∈ 𝐴|there exists a 𝑏 ∈ 𝐵, 𝑎𝑅𝑏}
• the co-domain of R is the set 𝐶𝑜𝑑 (𝑅) = {𝑏 ∈ 𝐵 |there exists an 𝑎 ∈ 𝐴, 𝑎𝑅𝑏}

Example 4.2 Given 𝐴 = {1, 2, 3, 4}, 𝐵 = {𝑎, 𝑏, 𝑑, 𝑒, 𝑟, 𝑡} and 𝑎𝑅𝑏 iff in the Ital-
ian name of 𝑎 there is the letter 𝑏, then 𝑅 = {(2, 𝑑), (2, 𝑒), (3, 𝑒), (3, 𝑟), (3, 𝑡),
(4, 𝑎), (4, 𝑟), (4, 𝑡)}

Example 4.3 Given 𝐴 = {3, 5, 7}, 𝐵 = {2, 4, 6, 8, 10, 12} and 𝑎𝑅𝑏 iff 𝑎 iff 𝑎 is a
divisor of 𝑏, then 𝑅 = {(3, 6), (3, 12), (5, 10)}

Definition 4.15 (Inverse relation) Let 𝑅 be a relation from 𝐴 to 𝐵. The inverse
relation of 𝑅 is the relation 𝑅−1 ⊆ 𝐵 × 𝐴 where

𝑅−1 = {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝑅}

Definition 4.16 (Relation Properties) Let R be a binary relation A.𝑅 is:

• reflexive iff 𝑎𝑅𝑎 for all 𝑎 ∈ 𝐴

• symmetric iff 𝑎𝑅𝑏 implies 𝑏𝑅𝑎 for all 𝑎, 𝑏 ∈ 𝐴

• transitive iff 𝑎𝑅𝑏 and 𝑏𝑅𝑐 imply 𝑎𝑅𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴



4.1 Set theory 29

• anti-symmetric iff 𝑎𝑅𝑏 and 𝑏𝑅𝑎 imply 𝑎 = 𝑏 for all 𝑎, 𝑏 ∈ 𝐴

Definition 4.17 (Equivalence relation) Let 𝑅 be a binary relation on a set 𝐴. 𝑅 is
an equivalence relation iff it satisfies all the following properties:

• reflexive
• symmetric
• transitive

Remark 4.1 An equivalence relation is usually denoted with ∼ or ≡

Definition 4.18 (Set partition) Let 𝐴 be a set, a partition of 𝐴 is a family 𝐹 of
non-empty subsets of 𝐴 so that:

• the subsets are pairwise disjoint
• the union of all subsets is the set 𝐴

Remark 4.2 Each element of 𝐴 belongs to exactly one subset in 𝐹

Definition 4.19 (Equivalence class) Let 𝐴 be a set and ≡ an equivalence relation on
𝐴, given an x ∈ 𝐴 we define equivalence class 𝑋 the set of elements x’ ∈ 𝐴 s.t. x’ ≡
x, formally:

𝑋 = {𝑥′ |𝑥′ ≡ 𝑥}

Remark 4.3 Any element x is sufficient to obtain the equivalence class 𝑋 , which is
denoted also with [x].

x ≡ x’ implies [x]=[x’]=𝑋

Definition 4.20 (Quotient set) We define quotient set of 𝐴 with respect to an equiv-
alence relation ≡ as the set of equivalence classes defined by ≡ on 𝐴, and denote it
with 𝐴 / ≡.

Theorem 4.2 Given an equivalence relation ≡ on 𝐴, the equivalence classes defined
by ≡ on 𝐴 are a partition of 𝐴. Similarly, given a partition on 𝐴, the relation 𝑅

defined as 𝑥𝑅𝑥′ iff 𝑥 and 𝑥′ belong to the same subset, is an equivalence relation on
𝐴.

Example 4.4 (Parallelism relation) Two straight lines in a plane are parallel if they
do not have any point in common or if they coincide.
The parallelism relation | | is an equivalence relation since it is:

• reflexive: 𝑟 | |𝑟
• symmetric: 𝑟 | |𝑠 implies 𝑠 | |𝑟
• transitive 𝑟 | |𝑠 and 𝑠 | |𝑡 imply 𝑟 | |𝑡

We can thus obtain a partition in equivalence classes: intuitively, each class represent
a direction in the plane.

Order relation:
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Definition 4.21 (Order) Let 𝐴 be a set and 𝑅 be a binary relation on 𝐴.
𝑅 is an order (partial), usually denoted with ≤, if it satisfies the following properties:

• reflexive 𝑎 ≤ 𝑎

• anti-symmetric 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 imply 𝑎 = 𝑏

• transitive 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 imply 𝑎 ≤ 𝑐

If the relation holds for all 𝑎, 𝑏 ∈ 𝐴 then it is a total order.

A relation is a strict order, denoted with "<", if it satisfies the following proper-
ties:

• transitive 𝑎 < 𝑏 and 𝑏 < 𝑐 imply 𝑎 < 𝑐

• for all 𝑎, 𝑏 ∈ 𝐴 either 𝑎 < 𝑏 or 𝑏 < 𝑎 or 𝑎 = 𝑏

4.1.3 Functions

Definition 4.22 (Functions) Given two sets A and B, a function f from A to B is a
relation that associates to each element 𝑎 in A exactly one element 𝑏 in B. Denoted
with:

𝑓 : 𝐴 → 𝐵

The domain of 𝑓 is the whole set 𝐴.
The image of each element 𝑎 in 𝐴 is the element 𝑏 in 𝐵 s.t. 𝑏 = 𝑓 (𝑎).
The co-domain of 𝑓 (or image of 𝑓 ) is a subset of 𝐵 defined as follows:

𝐼𝑚 𝑓 = {𝑏 ∈ 𝐵 | there exists an 𝑎 ∈ 𝐴 s.t. 𝑏 = 𝑓 (𝑎)}

Remark 4.4 It can be the case that the same element in 𝐵 is the image of several
elements in 𝐴.

Classes of functions:

Definition 4.23 (Surjective function) A function 𝑓 : 𝐴 → 𝐵 is surjective if each
element in 𝐵 is image of some elements in 𝐴 :

for each 𝑏 ∈ 𝐵 there exists an 𝑎 ∈ 𝐴 s.t. 𝑓 (𝑎) = 𝑏

Definition 4.24 (Injective function) A function 𝑓 : 𝐴 → 𝐵 is injective if distinct
elements in 𝐴 have distinct images in 𝐵 :

for each 𝑏 ∈ 𝐼𝑚 𝑓 there exists a unique 𝑎 ∈ 𝐴 s.t. 𝑓 (𝑎) = 𝑏

Definition 4.25 (Bĳective function) A function 𝑓 : 𝐴 → 𝐵 is bĳective if it is
injective and surjective:

for each 𝑏 ∈ 𝐵 there exists a unique 𝑎 ∈ 𝐴 s.t. 𝑓 (𝑎) = 𝑏
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Definition 4.26 (Inverse function) If 𝑓 : 𝐴 → 𝐵 is bĳective we can define its
inverse function:

𝑓 −1 : 𝐵 → 𝐴

Remark 4.5 For each function 𝑓 there is a inverse relation. This relation is a function
iff 𝑓 is bĳective.

Example 4.5 (Inverse function) Example of two different inverse functions:

Fig. 4.5 Inverse of not bĳective function

Fig. 4.6 Inverse of bĳective function

Definition 4.27 (Composite function) Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be functions.
The composition of 𝑓 and 𝑔 is the function 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 obtained by applying 𝑓

and then 𝑔:

• (𝑔 ◦ 𝑓 ) (𝑎) = 𝑔( 𝑓 (𝑎)) for each 𝑎 ∈ 𝐴

• 𝑔 ◦ 𝑓 = {(𝑎, 𝑔( 𝑓 (𝑎)) |𝑎 ∈ 𝐴)}
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4.2 Graph theory

4.2.1 Basic Notions

Definition 4.28 (Graph) A graph 𝑮 is an ordered pair 𝑮 =< 𝑽, 𝑬 >, where 𝑽 is
the set of vertices (or nodes) and 𝑬 is the set of edges (or links). Edges are pairs of
vertices.

Definition 4.29 (Order) The order of a graph is the number of vertices of the graph.

Definition 4.30 (Size) The size of a graph is the number of edges in the graph.

Definition 4.31 (Degree) The degree of a vertex is the number of edges incident on
that vertex.

Definition 4.32 (Directed graph) A directed graph is a graph where edges are
ordered pairs of distinct vertices (𝒙, 𝒚). 𝒙 and 𝒚 are called the end points, where 𝒙
is the tail and 𝒚 is the head.

From now on we concentrate on directed graphs.

Definition 4.33 (Leaf, intermediate node) In a directed graph, a leaf is a node with
no outgoing nodes. A node which is not a leaf is an intermediate node.

Definition 4.34 (Path) A path, also called a linear graph, is a graph where the
vertices can be ordered in a sequence 𝒗1, 𝒗2, . . . , 𝒗𝒏, where the edges correspond to
the pairs of consecutive vertices {𝒗𝒊 , 𝒗𝒊+1} for 𝒊 = 1, 2, . . . , 𝒏 − 1.

Fig. 4.7 Path Graph

Definition 4.35 (Cycle, cyclic graph) A cycle, also called a circular graph, is a
path in which only the first and last vertices are equal. A cyclic graph is a graph
which contains a cycle.
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Fig. 4.8 Cyclic Graph

Definition 4.36 (Tree, rooted tree, root, leaf, intermediate nodes) A tree is an
undirected graph in which any two vertices are connected by exactly one path. A
polytree, or or directed tree, or oriented tree, is a directed acyclic graph whose
underlying undirected graph is a tree. A rooted tree is a tree in which one vertex has
been designated the root. A root is a node with no incoming nodes.

Fig. 4.9 Tree Graph

Definition 4.37 (Forest, polyforest, directed forest, oriented forest) A forest is an
undirected graph. A polyforest, or directed forest, or oriented forest, is a directed
acyclic graph whose underlying undirected graph is a forest.
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Fig. 4.10 Forest Graph

Definition 4.38 (Directed acyclic graph (DAG)) A directed acyclic graph (DAG)
is a directed graph that does not contain any cycles.

Fig. 4.11 Directed Acyclic Graph

4.2.2 Labeled Graphs

From now on we concentrate on labeled directed graphs.

Definition 4.39 (Labeled Graph) A labeled graph is a type of graph where each
vertex and edge is assigned a label.
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Fig. 4.12 Labeled Graph

Fig. 4.13 Labeled Graph

4.3 Exercises

Exercise 4.1 (Linguistic and analogical mental representations) Create an ana-
logical representation using set theory for this linguistic mental representation.

• In(tree, lab)
• In (monkey1, lab)
• In(monkey2, lab)
• Eating(monkey1, banana)
• SittingOn(monkey2, tree)*
• Scratching(monkey2, hisHead)*
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Exercise 4.2 (Linguistic and analogical mental representations) Create an ana-
logical representation using set theory for this linguistic mental representation. This
time improve it using labels.

• In(tree, lab)
• In (monkey1, lab)
• In(monkey2, lab)
• Eating(monkey1, banana)
• SittingOn(monkey2, tree)*
• Scratching(monkey2, hisHead)*

Exercise 4.3 (Linguistic and analogical mental representations) Create an ana-
logical representation using knowledge graphs for this linguistic mental representa-
tion.

• In(tree, lab)
• In (monkey1, lab)
• In(monkey2, lab)
• Eating(monkey1, banana)
• SittingOn(monkey2, tree)*
• Scratching(monkey2, hisHead)*

Exercise 4.4 (Linguistic and analogical mental representations) Create an ana-
logical representation using knowledge graphs for this linguistic mental representa-
tion. This time improve it using labels.

• In(tree, lab)
• In (monkey1, lab)
• In(monkey2, lab)
• Eating(monkey1, banana)
• SittingOn(monkey2, tree)*
• Scratching(monkey2, hisHead)*



Part II
World models and logics





Chapter 5
World Model - extensional representation

Assertional theories and models are an important step ahead but there are still three
main limitations:

• We are considering only the facts of the model in focus. What about the facts
which can occur in the other possible models, describing possibly very different,
situations?

• The language being used is very limited and consists only of the set of asser-
tions which describe the facts of the model in focus. What about the assertions
describing facts in all the the other models?

• As a consequence of the two facts above, the definition of Interpretation function
is not general. A new and different interpretation function must defined for any
new situation.

5.1 Domain

As from Equation (3.1) we have that a model M is defined as M = {f}, where {f} is
a set of facts which are the case in certain situation.

Definition 5.1 (Domain (of interpretation)) A Domain (of interpretation) is a set
of facts {f}.

D = {f} (5.1)

Definition 5.2 (Model) Given a domain D, a model M is a subset of D.

M = {f} ⊆ D (5.2)

39
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Observation 5.1 (Domain, model) A domain is the set of all facts that we are willing
to consider. A model is just the subset of fact that we define as depicting what is the
case in the current situation. Definition 5.2 generalizes in the obvious way Definition
3.1

Example 5.1 (The facts of the domain represented in Figure 3.1) A domain collecting
among others the facts represented in Figure 3.1 could for instance contain the
following facts:

Sofia is a person Sofia is a woman
Paolo is a man Paolo is a person
Paolo is a dog Rocky is a dog
Sofia is near Paolo Rocky is the dog of Sofia
Rocky is the dog of Paolo . . .

. . . and many more.

Observation 5.2 (Domain) While a model is the set of facts which are the case in
a certain situation, a domain consists of the set of facts which are potentially the
case for all possible situations. A Domain defines all and only that can be potentially
perceived.

Observation 5.3 (Mutually inconsistent facts in a domain) As from Example 5.1
a domain, differently from a model, can contain facts which, at least intuitively are
mutually inconsistent. Given a domain, there are many potential models, some of
which are potentially mutually inconsistent. Domains must allow for the possible
instantiation of distinct mutually inconsistent models, as it is normally the case in
the world.

5.2 Assertional language

As from Equation (3.2) we have that an assertional TheoryTA is defined asTA = {𝑎},
where {𝑎} is a set of assertions which describe the facts which are the case in certain
situation.

Definition 5.3 (Assertional language) An assertional language L𝐴 is a set of
assertions {𝑎}

L𝐴 = {𝑎} (5.3)

Definition 5.4 (Assertional theory) Given an assertional language L𝐴, an asser-
tional theory TA is a subset of L𝐴.

TA = {𝑎} ⊆ L𝐴 (5.4)
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Observation 5.4 (Assertional language) While an assertional theory is the set of
assertions which describes what is the case in a certain model, an assertional language
consists of the set of assertions which describe all the facts that can potentially occur.
Definition 5.4 extends in the obvious way Definition (3.2).

Example 5.2 (Assertional language) The language from Example 3.3 extended to
name all the facts of the domain defined in Example 5.1 in the same way (i.e.
quoted Italian translations of the English sentence describing a fact) is an assertional
language.

Observation 5.5 (Completeness and correctness of an assertional language L𝐴
with respect to a domain D) An assertional language is not necessarily complete,
that is, it does not necessarily contain assertions for all the facts in a domain (which,
among other things, are in principle infinite). The key feature is that is should contain
all the assertions deemed relevant. Vice versa an assertional language is requested
to be correct, that is to contain only assertions which denote facts in the reference
domain. This in order to avoid nonsensical assertions.

Example 5.3 (Assertional languages)

1. Languages which allow only for assertions in natural language of the form
"<subject> <verb> <object>" describe facts about the world. The language
used is a sequence of simple assertions without complex phrases.

2. Relational databases (DBs) describe facts about the world. The language used to
describe the contents of a relational DB are tables;

3. Entity-relationship (ER) models describe general facts about the contents of
databases. The are written using the ER diagram language, a specific labelled
graph language;

5.3 Interpretation function

Definition 5.5 (Interpretation function) Let L𝐴 be a language of assertions and
D be a domain. Then an Interpretation Function of an assertional language I𝐴 is
defined as

I𝐴 : L𝐴 → D (I𝐴 ⊆ L𝐴 × D) (5.5)

We say that a fact f ∈ M is the interpretation of 𝑎 ∈ I𝐴, and write

f = I𝐴(𝑎) = 𝑎I𝐴 (5.6)

to mean that 𝑎 is a linguistic description of f. We say that f is the interpretation of
𝑎, or, equivalently, that 𝑎 denotes f.

Observation 5.6 (Interpretation function) Definition 5.5 generalizes as needed
and substitutes Definition 3.3.
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Observation 5.7 (Interpretation function, non-ambiguity and synonymity) As
from Observation 3.7, 3.8, 3.9, interpretation functions, being functions, are not
ambiguous thus not allowing for polysemous assertions and words while allowing
for synonymity.

Observation 5.8 (Interpretation function, totality) Interpretation functions are
total. This guarantees that any element of the language has an interpretation.

Observation 5.9 (Interpretation function, non-surjectivity) Interpretation func-
tions are not necessarily surjective. In other words, if I𝐴 : L𝐴 → D, L𝐴 may not be
able to name all the facts in D. This property is useful with infinite domains or when
one is not interested in mentioning all the known facts. See also Observation 5.5.

Example 5.4 (Interpretation function) A from Example 5.2, take L𝐴 to contain the
assertions in Example 3.3, extended to describe all the facts in the domain D defined
in Example 5.1. Take the domain D defined in Example 5.1. Then, an interpretation
function I𝐴 : L𝐴 → D can be constructed by extending in the obvious way the
interpretation function defined in Example 3.4.

5.4 World model

The journey is complete. We have only to pull everything together.

Observation 5.10 (The roles of D, L, I𝐴, M, TA) The definitions provided in the
previous sections can be summarized by the following figure.

𝑎 TA L𝐴

f M D

I𝐴

∈ ⊆

I𝐴 I𝐴

∈ ⊆

(5.7)

In Equation (5.7), D defines the set of facts f of potential interest, M the set of
facts we are focusing on, L𝐴 the set of assertions 𝑎 of potential interest, and, finally
TA is the theory describing M. In other words, how single assertions 𝑎 describe
single facts f on one side, and how the overall sets of assertions L𝐴 describe D on
the other side, define the scope within which an assertional theory TA can focus to
describe specific models M. Assertions, languages and theories are just the means for
specifying the intended model stating the intended facts among this allowed by the
reference domain.

Definition 5.6 (World Model)

Ŵ = ⟨L𝐴, D, I𝐴⟩ (5.8)

is a world model.
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Observation 5.11 (World model) In Equation (5.7) the components of a world
model, i.e., D, L𝐴, I𝐴, define the general rules which are followed when building
a representation. They are defined a priori, usually by experts in modeling and
knowledge representation as general tools to be used by practitioners. They provide
the general modeling infrastructure which allows to represent real world problems.
They also provide a uniform framework under which any two representations can
be compared and possibly even merged. Software practitioners usually study these
models during some CS or AI classes and they use them as is when developing
systems; think for instance of the large usage of ER models.

Observation 5.12 (From mental representations to world models) World mod-
els are spaces of possible representations, i.e., theories, designed to minimize the
possibility of different mental representations of the same theory and corresponding
model depicting the world.

World models provide the general framework within which assertional theories
and models can be defined and compared.

Observation 5.13 (Theory and Model) Remember that, given a world model Ŵ =

⟨L𝐴, D, I𝐴⟩, we have that M = {f} ⊆ D (Equation (5.1)) and TA = {𝑎} ⊆ L𝐴
(Equation (5.3))

Observation 5.14 (Defining a model via a theory) The most common way to model
the world is by defining a set of assertions, what we call a theory. In other words, we
construct a model M by selecting any subset TA of L𝐴. This is the common approach
when the task is that of representing from scratch a given part of the world which is
of interest.

However, sometimes, one is given a predefined theory TA and a predefined model
M and is asked how they relate. In which case we have the following.

Definition 5.7 (Correctness and completeness of an assertional theory TA with
respect to a model M) Let Ŵ = ⟨L𝐴, D, I𝐴⟩ be a world model. Let TA ⊆ L𝐴 and
M ⊆ D be an assertional theory and a model, respectively. Then we have two possible
situations, as follows

• Correctness. Let 𝑎 ∈ L𝐴 be an assertion. If for all 𝑎, if 𝑎 ∈ TA then I𝐴(𝑎) ∈ TA
we say that TA is correct with respect to M, or that M is a model for 𝐴𝐿;

• Completeness. Let f ∈ M be a fact. If, for all f, if f ∈ M then there is an assertion
𝑎 ∈ TA such that I𝐴(𝑎) = f we say that TA is complete with respect to M

The notions of incorrectness and incompleteness are defined in the obvious way

Observation 5.15 (Correctness and completeness of an assertional theory TA
with respect to a model M) An assertional theory may not be complete, namely
there can be facts of the domain for which it does contain assertions. Incomplete
descriptions of models are the default, because of ignorance or also because of
missing interest. However a theory TA must contain only assertions about facts in M
for M of TA. This in order to avoid faulty information. Notice how this requirement
is opposite to that on languages and domains as from Observation 5.5.
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Example 5.5 (Correctness and completeness of an assertional theoryTA with respect
to a model M) Consider Example 3.4. An assertional theory TA containing all and
only the assertions domain of the interpretation function in Example 3.4 is correct
and complete with respect to the model M containing all and only the facts which are
in the domain of the same interpretation function. Any assertional theory which is a
subset of TA is correct with respect to M. M is not a model of any superset of TA.
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World models, allow us to exploit facts and assertions about them as the main
components needed to build a representation of the world, to be later used for
solving problems.

Observation 6.1 (World model, extensional representation) World models, as
from Definition 5.6, are extensional representations of the world, namely they
are defined as sets of assertions 𝑎 and facts f, plus an interpretation function I𝐴
which allows to define which assertions denote which facts in one or more reference
models.

But what is fact? How do we construct assertions about facts? The answer to
this question requires defining an intensional representation of world models,
namely the representation mechanisms which allow to construct assertions and
facts starting from a finite set of primitive component elements. In the following,
whenever needed in order to avoid confusion we adopt the following notation and
terminology.

Notation 6.1 (Extensional and intensional representation of a set) Let S be a set.
Then by S𝑒 we mean the extensional representation of S, i.e., as a set of elements
(e.g., facts, assertions, but not only); by S 𝑖 we mean the intensional representation
of S, where the elements of S𝑒 are defined intensionally, starting from a set of
primitive components. The superscripts are dropped when no confusion arises.

6.1 Domain

Example 3.1, Observation 3.1 and also Observation 3.5 provide indications about
how to construct an intensional representation of facts.

Intuition 6.1 (Domain, intensional representation) The intensional representation
of a domain is composed of three components, as follows

45
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• entities, associated with those elements of the representation which can be isolated
and distinguished from the rest;

• classes (sets) of entities, characterized by the fact they have some common char-
acteristics which is not shared by the entities of the other sets;

• relations among entities, which collect multiple entities sharing a common prop-
erty.

Definition 6.1 (Domain, intensional representation) The intensional representa-
tion D𝑖 of a domain D is defined as

D𝑖 =< E, {C}, {R} > (6.1)

with
E = {e}
C ⊆ E
R ⊆ E × · · · × E︸       ︷︷       ︸ n times

where E = {e} is a set of entities, {C} is a set of classes of entities, {R} is a set of
𝑛-ary relations R𝑛, for some 𝑛. E is called the universe of D𝑖 or also the universe of
interpretation.

Definition 6.2 (Fact, intensional representation) The intensional representation
D𝑒 of a fact f has one of the following four forms

e ∈ C
< e1, ..., e𝑛 > ∈ R

C ⊆ E
R𝑛 ⊆ C1 × · · · × C𝑛

(6.2)

with e, e𝑖 ∈ E and C, C𝑖 ⊆ E.

Observation 6.2 (Fact, intensional representation) The intuition behind Defini-
tion 6.2 goes as follows. e ∈ C means that a certain entity e belongs to a certain
class C, as with the statement that Sofia is a person. < e1, ..., e𝑛 >∈ R means that 𝑛
entities stand in certain relation, as with the statement that Paolo is in between Sofia
and Stefania. C ⊆ E means that C, e.g. person, is a class. R𝑛 ⊆ C1 × · · · × C𝑛 means
that a relation applies only to specific classes, as with the statement that persons are
friends of animals.

Observation 6.3 (Complexity of facts) One could think of more sophisticated facts,
for instance the fact C1 ⊆ C2. This is of course possible, at the price of complicating
the assertional language, with an upper limit in the intuitiveness of the resulting
world model. Here we are defining the simplest possible world model. Represen-
tation languages and logics can anyhow be used to increase the expressivity of the
representation language.

Example 6.1 (Fact, intensional and extensional representation) Let us consider Ex-
ample 5.1. The fact that Sofia is person is constructed by taking the entity Sofia and
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by asserting that it is a person. The fact that Sofia is near Paolo is constructed by
asserting that the entities Sofia and Paolo stand in the relation of one being near the
other.

Definition 6.3 (Domain, extensional representation) The extensional represen-
tation D𝑒 of a domain D, whose intensional representation D𝑖 is as from Definition
6.1, is D𝑒 = {f} with f as from Definition 6.2.

Observation 6.4 (Entity) But what is an entity? The general idea is that an entity is
something which can be perceived and can therefore be represented in an analogical
representation of (a part of) the world. Is an entity a specific object? Or a person?
Or an animal? Yes, but also anything happening in time, i.e., an event or a process.
Entities are assumed to have names. Examples of (names of) entities: Federico,
Pussy, Garfield, Trento, the last Football Worldcup, and so on.

Intuition 6.2 (Entity) An entity is anything which can be represented in a (analog-
ical or linguistic) representation of the world and which has a name. An entity can
be represented in the mental representation of the world any time it is perceived or
its name is heard by a human.

Intuition 6.3 (Name) A name is a string, written in some language, that allows to
refer to entities in representations and, more specifically, in world models.

Intuition 6.4 (Named entity) The vineyard in front of me is not an entity (for me).
Even if I can distinctly see it, I don’t have a name which I can use to refer to it, for
instance when talking with others. Entities, to be entities, must be named entities.

Observation 6.5 (Domain, intensional representation) We intensionally model
the world around us in terms of entities. Entities, in turn, are grouped in specific
classes, depending on certain properties of theirs. Thus we have, for instance, the
classes: human, person, woman, animal dog, car, pen, computer, and so on. Then
entities can be put in relations among one another depending on their class. This for
instance: humans are friends of humans, or animals, they eat food, a car is near a
traffic light. And so on.

Observation 6.6 (Domain, partiality) A domain does not need to contain all five
types of facts listed in Definition 6.2. The selection of which facts to include depends
on what is being modeled. Roughly speaking domains can be split in two types. The
first is data domains, so called because they describe what is perceived, which involve
the first two types of facts in Definition 6.2. The second types is knowledge domains,
so called because they focus on general statements, not directly perceivable, and
describe general relations among classes and relations. Knowledge domains involve
the last three types of statements. There are also what we call here mixed domains,
namely domains which involve all types of facts. Mixed domains are very useful in
communication, e.g., natural language communication among people, as they allow
to express uniformly knowledge about entities, classes and relations.
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Definition 6.4 (Domain, data, knowledge, mixed) A data domain contains only
facts of the form e ∈ C and < e1, ..., e𝑛 >∈ R. A knowledge domain contains only
facts of the form C1 ⊆ E, R𝑛 ⊆ C1 × · · · × C𝑛. A mixed domain contains all types of
facts.

Example 6.2 (Data domain) The domain described in Example 5.1 is a data domain.
Some of its facts can be intensionally represented as follows:
sofia ∈ Person <rocky, paolo> ∈ DogOf
sofia ∈ Woman paolo ∈ Dog
<paolo, rocky> ∈ HasDog rocky ∈ Dog
<sofia, paolo> ∈ Near <rocky, sofia> ∈ DogOf
paolo ∈ Man <sofia, paolo> ∈ FriendOf
<paolo, sofia, stefania> ∈ Between
Notationally, entities are written with first letters lower case while in Concepts

and Properties it is upper case.

Example 6.3 (Knowledge domain) A knowledge domain describing the knowledge
underlying the data domain in Example 5.1 is a data domain could for instance
contain the following facts.

Person ⊆ Entity HasDog ⊆ Person × Dog
Dog ⊆ Entity DogOf ⊆ Dog × Person
Animal ⊆ Entity FriendOf2 ⊆ person × person × person
Near ⊆ Entity × Entity FriendOf1 ⊆ Person × Person
FatherOf ⊆ Person × Person ChildOf ⊆ Person × Person

where Entity stands for E.

Example 6.4 (Mixed domain) An example of mixed domain cane be built by unioning
the domains in Example 6.2 and 6.3.

6.2 Assertional language

Definition 6.5 (Assertional language, intensional representation) The inten-
sional representation L𝑖

𝐴
of an assertional language L𝐴 is defined as

L𝑖𝐴 =< E , {C}, {P} > (6.3)

where E = {𝑒} is a set of (names of) entities, {C} is a set of concepts, where a
concept is a name of a class, {P} and a set of properties, where a property is a
name of a relation.

Definition 6.6 (Assertional language, extensional representation) The exten-
sional representation L𝑒

𝐴
of an assertional language L𝐴, whose intensional rep-

resentation L𝑖
𝐴

is as from Definition 6.5, is L𝑒
𝐴
= {𝑎} with 𝑎 having one of the

following four forms
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C (𝑒)
P𝑛 (𝑒1, . . . , 𝑒𝑛)
C
P𝑛 (C1, . . . , C𝑛)

(6.4)

where: C (𝑒) should be read as the entity of name 𝑒 belonging to the class of name
C, P (𝑒1, . . . , 𝑒𝑛) as the entities of name 𝑒1, . . . , 𝑒𝑛 being involved in the relation of
name P .

Observation 6.7 (Abstract and concrete syntax) The assertions in Definition 6.6
must be read as abstract syntax, rather than concrete syntax. That is, they must be
taken as placeholders for many different ways of describing the same fact in different
assertional languages. Thus, for instance, the abstract syntax assertion Person(Sofia)
is the abstract syntax representation of many concrete syntax representations such as,
for instance, Person(Sofia), Sofia is a person, P(S), (Sofia)Person (postfix notation)
and, most importantly, various types of graph notations (see below). What gives
meaning to assertions is their intended meaning, as defined by the Interpretation
function (see below). In concrete, the syntax used in the first two assertions is from
the LOE logic, while that of the last three is from the LOD logic.

Terminology 6.1 (Alphabet) The intensional representation, in Definition 6.6, L𝑖
𝐴
,

of a language, in this case L𝐴, defined extensionally, in this case L𝑒
𝐴
, is also called

the alphabet (of that language).

Observation 6.8 (Alphabet) Assertions describe facts. The first step is to associate
to each element of the domain a name in the alphabet of the assertional language.
Then, assertions are built compositionally following how facts constructed. This cre-
ates a one-to-one mapping between facts and assertions which immediately suggest
the fact described by an assertion.

Observation 6.9 (Assertional language, partiality) Observation 6.6 extends in the
obvious way to assertional languages.

Definition 6.7 (Assertional language, data, knowledge, mixed) An assertional
data language contains only assertions of the form C (𝑒) and P (𝑒1, . . . , 𝑒𝑛). An as-
sertional knowledge language contains only facts of the form C andP𝑛 (C1, . . . , C𝑛).
An assertional mixed language contains both types of assertions.

Example 6.5 (An assertional data language describing the data domain in Example
6.2) Some assertions are as follows:

Person(sofia) Woman(sofia) Man(paolo)
Person(paolo) Dog(paolo) Dog(rocky)
Near(sofia, paolo) DogOf(rocky, sofia) FriendOf(sofia, paolo)
DogOf(rocky, paolo) HasDog(sofia, rocky) HasFriend(paolo, sofia)
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Example 6.6 (An assertional knowledge language describing the knowledge domain
in Example 6.3) Some assertions are as follows:

Person HasDog(Entity,Entity) Woman
Dog FriendOf2(Man,Man,man) Animal
Near(Entity, Entity) HasFriend(Man,Dog) FriendOf1(Person, Person)

where Entity is the concept denoting the set Entity of all the entities in the domain.

Example 6.7 (An assertional mixed language describing the mixed domain in Ex-
amples 6.2, 6.3) Some assertions are as follows:

Person Near(rocky, paolo) Person(paolo)
FriendOf1(Person, Person) FriendOf1(sofia, paolo) Dog
Dog(rocky) Near(Entity,Entity) Near(paolo, sofia)

Knowledge assertions imply about data assertions. Thus, for instance, one could
infer that Sofia is a person from the fact that she is a friend of another person. This
takes reasoning, i.e., what logics are for.

Example 6.8 (An assertional knowledge language, using ER models, describing the
knowledge domain in Example 6.3) Consider Example 6.6: let us concentrate on the
following concepts and roles:

Person Animal HasAnimal(Person, Animal)
OwnedBy(Animal, Person) Woman Man
Dog HasDog(Man, Dog) HasDog(Women, Dog)
OwnedBy(Dog, Man) OwnedBy(Dog, Woman)

Here is a sample ER Model describing our example:

Fig. 6.1 ER Model.
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Notation: squares represent concepts, rhombuses represent relationships, triangles
represent an IS-A relationship (so for example Man is an instance of a Person).
Notice that domains, as we have defined them, do not allow for the IS-A relationship
facts (for the moment, see Observation 6.3). This is why this relation must not be
considered for ER languages to be assertional languages. As for the arrows the one
with two stangs represents a one-to-one relationship, while the fork arrows represent
a many-to-many relationship, where those with a white dot identify the optional
existence of the relationship.

Example 6.9 (An assertional data language, using relational DBs, describing the
data domain in Example 6.2) Considering the assertions of the example 6.1 here is
how our data are represented by a database:

Fig. 6.2 Database with Data.

We see how some boxes are instantiated to NULL, this being the case for lack of
information.

Example 6.10 (An assertional knowledge language, using relations DB schemas,
describing the knowledge domain in Example 6.2) Instead, in this example we see
the relationships of the various keys in the database (let’s continue to consider the
assertions in example 6.1):

Fig. 6.3 Database Relations.
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Note that the foreign keys map to entity relationships, for instance, as from Exercise
6.9.

Observation 6.10 (Assertional languages, data, knowledge and mixed) The three
examples clarify the scope and purpose of data, knowledge and mixed languages and
domains. Data languages, describing facts in the real world formalize the contents
of (relational) DBs or analogous representations (CSV , JSN, XML files). Knowl-
edge languages specify the reference knowledge, e.g., relations, attributes, of data
languages. Mixed languages are used to specify both.

6.3 Interpretation function

Definition 6.8 (Interpretation function, intensional interpretation) The Inten-
sional representation I 𝑖

𝐴
of an interpretation function I𝐴 : L𝐴 → D of an

assertional language is defined as

I 𝑖𝐴 =< I𝑒, I𝐶 , I𝑃 > (6.5)

with:
I𝑒 : E → E
I𝐶 : {C} → {E}
I𝑃 : {P𝑛} → {E} × · · · × {E}

(6.6)

and such that:

I𝐴(C (𝑒)) = I𝐶 (C) (I𝑒 (𝑒)) = e ∈ C
I𝐴(P𝑛 (𝑒1, . . . , 𝑒𝑛)) = I𝑃 (P𝑛) (I𝑒 (𝑒1), . . . , I𝑒 (𝑒𝑛)) = < e1, . . . , e𝑛 >∈ R𝑛

I𝐴(C) = I𝐶 (C) = C ⊆ E
I𝐴(P𝑛 (𝐶1, . . . , 𝐶𝑛)) = I𝑃 (P𝑛) (I𝐶 (𝐶1), . . . , I𝐶 (𝐶𝑛)) = R𝑛 ⊆ C1 × · · · × C𝑛

(6.7)
where: I𝑒 is the entity interpretation function, I𝐶 is the concept interpretation
function and I𝑃 is the property interpretation function

Notation 6.2 (Alternative notation for the interpretation function) Equation (6.7)
is sometimes written as follows:

I𝐴(C (𝑒)) = CI (𝑒I)
I𝐴(P (𝑒𝑖 , 𝑒 𝑗 )) = PI (𝑒I

𝑖
, 𝑒I
𝑗
)

I𝐴(C) = CI

I𝐴(P (C𝑖 , C 𝑗 )) = PI (CI
𝑖
, CI
𝑗
)

(6.8)

Observation 6.11 (Interpretation function) Equation (6.7) shows how I𝐴 is ap-
plied recursively by applying it to the components of its input assertion till the
interpretation of entities. In this process its components are applied as needed, that
is, I𝑒 to entities, I𝐶 to concepts and I𝑃 to properties. The one-to-one mapping
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between the language and the structure of the domain is exploited by the interpFre-
tation function to build the meaning of an assertion compositionally starting from
the meaning of its components.

Observation 6.12 (Interpretation function, intensional interpretation) When D𝑖
and L𝑖

𝐴
are built following the rules highlighted in Observation 6.8 and I𝐴 is

as from Equation (6.7), then the representation of a the world is intuitive and self-
documenting and mapped one-to-one to the analogical representation it is describing.
This essentially allows the representation developer to focus only linguistic represen-
tations, only implicitly thinking about the corresponding analogical representation.

Definition 6.9 (Interpretation function, data, knowledge, mixed) A data inter-
pretation function maps an assertional data language into a data domain. A knowl-
edge interpretation function maps an assertional knowledge language into a knowl-
edge domain. A mixed interpretation function maps a mixed language into a mixed
domain.

Example 6.11 (A data interpretation function from the data language in Example
6.5 to the data domain in Example 6.2) An instance of application is

I𝐴(FriendOf1(sofia, paolo) = I𝑃 (FriendOf1) (I𝑒 (sofia), I𝑒paolo)) =
= <sofia, paolo> ∈ FriendOf1

Example 6.12 (A knowledge interpretation function from the assertional language
in Example 6.6 to the knowledge domain in Example 6.3) An instance of application
is

I𝐴(FriendOf1) = I𝑃 (FriendOf1) = FriednOf1 ⊆ Person × Person

Example 6.13 (A knowledge interpretation from the ER model language in Example
6.1 to the knowledge domain in Example 6.3) An instance of application is

NEED PICTURE WITH MAPPING OF ONE CONCEPT AND ONE PREPERTY
ELEMENT

Example 6.14 (A data interpretation function from the DB language in Example 6.9
to the data domain in Example 6.2) An instance of application is

NEED PICTURE WITH MAPPING OF ONE DATA ELEMENT

COMMENT ON HOW TO MAP NULL

Example 6.15 (A knowledge interpretation function from the DB schema language in
Example 6.15 to the knowledge domain in Example 6.2) An instance of application
is



54 6 World model - intensional representation

NEED PICTURE WITH MAPPING OF ONE SCHEMA ELEMENT AND
DATAE TYPES AND KEYS

COMMENT ON FOREIGN AND PRIMARY KEYS

6.4 World model

Definition 6.10 (World Model, intensional representation) Given a World Model
Ŵ is defined as

Ŵ =< L𝐴, D, I𝐴 >,

its intensional representation Ŵ 𝑖 is defined as

Ŵ 𝑖 =< L𝑖𝐴, D
𝑖 , I 𝑖𝐴 > (6.9)

with
L𝑖
𝐴
= < E , {C}, {P} >

D𝑖 = < E, {C}, {R} >

I 𝑖
𝐴
= < I𝑒, I𝐶 , I𝑃 >

where Ŵ 𝑖 is (called) the world model stencil, D𝑖 the domain stencil, L𝑖
𝐴

is the
(assertional) language stencil and I 𝑖

𝐴
is the interpretation function stencil.

Observation 6.13 (World model stencil) Ŵ 𝑖 is all we need to define to a world
model and to use it to implement theories and corresponding models. See Observa-
tions 5.13 and 5.14 and Definition 5.7.

Terminology 6.2 (Data, knowledge, mixed) We talk of data, knowledge and mixed
world models, theories and models with the obvious meaning.

Observation 6.14 (World model) Definition 6.10 tells us that a world model is
composed of a language L𝐴 of assertions about a reference domain D where there
the meaning of the assertions in L𝐴 is unambiguous in the sense that the fact denoted
by an assertion is univocally defined by the key role of the interpretation function
I𝐴. To this extent, it is worthwhile to summarize the key properties of interpretation
functions, as introduced and discussed above.

• It does not allow for polysemy: an element in the language denotes one and only
one element of the domain. Denotational ambiguity is not possible;

• It does allow for synonymity: one element of the domain my be denoted by more
than on element of the language;

• It is total: any element of the language has a denotation in the reference domain.
Meaningless assertions are not allowed;

• It is not (necessarily) surjective: there can be elements of the domain for which
there is no elements in the language which denote them;
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• It is compositional: the meaning of an assertion is computed by functional com-
position of its constituent elements. The meaning of assertions is intensionally
encoded in their structure.

Observation 6.15 (Defining a world model) Building a world model Ŵ =<

L𝐴, D, I𝐴 > requires going through the definition of its three components.The mo-
tivation is usually the need of modeling a certain problem domain. The modeller
usually starts with an intuitive understanding of the domain, even if not worked out
in full detail. The process usually follows the following steps:

1. Define L𝐴, where the key idea is that L𝐴 should capture the key aspects of the
target domain;

2. Specify D making sure that it is a proper analogical representation of the target
domain;

3. Define I𝐴, in this process validating the fact that L𝐴 and D are properly defined
and mutually aligned.

Quite often the last two steps, at least initially, are performed only intuitively rely-
ing on the compositionality of the interpretation function. These steps are usually
performed fully only when the world model has been in use for some time and its
ambiguities, if any, have become explicit. Overall, the process of building world
models is complex, requires a lot of expertise. It may take years to fully define a
world model.

Example 6.16 (Defining a world model) All along this section, starting from Section
2, we have been constructing world models. Simple world models can be constructed
by collecting language, domain and interpretation function from these examples and
by suitable aligning them. Notice however that, also mentioned before, defining
world models is a very complex task, requiring lots of expertise, filed validation and,
ultimately, time. As already mentioned before, ER models, UML models, subsets
of natural language enriched with suitable interpretation functions, are instances of
world models.

Observation 6.16 (Using a world model - building and reasoning about a theory
of the world) The problem is as described in Section 1.3 and Section 2.2. We have a
world model and we need to use its machinery to build a set of assertions, i.e., a theory
of the world, and we need to make sure what it represents, i.e., the reference model,
and its properties. Once a theory is articulated with reference to a world model, then
it is possible to study its properties to a general methodology and algorithms defined
in the next subsection.

The key aspect in the definition or selection of a world model is the decision on
the assertional language L𝐴 and the level of ambiguity it allows.

Intuition 6.5 (Language, informal, semi-formal, Logical) World model languages
are of three types, as follows:

• Informal languages, namely languages where the syntax of L𝑎 is defined infor-
mally, for instance, in natural language and without using production rules.
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• Semi-formal languages namely languages where the syntax of L𝐴 is formally
defined.

• Formal languages, also called Logical languages, namely languages where L𝐴
as well as I𝐴 are formally defined.

Example 6.17 (Language, informal, semi-formal, logical) With reference to the ex-
ample above, we have the following

• Informal languages: all natural languages;
• Semi-formal languages: DBs’ relational language, the ER and UML notation;
• Logical languages: the languages used in logics.

Observation 6.17 (Language, informal, semi-formal, logical) We have the follow-
ing.

• Informal languages are easier to use as everybody knows them. In Computer
Science they are typically used when writing early requirements, e.g., to be
shown to customers. The main difficulty is that there is a high probability of
misunderstanding. Now also used in the interactions with ChatBots.

• Semi-formal languages are typically used in Software Engineering when writ-
ing advanced requirements. They decrease the level of ambiguity and are very
effective in the collaborative work among Software Engineers. They can also be
used in automatic code generation. Problems may arise because of the presence
of some level of semantic ambiguity

• Logical languages have two main uses: (i) The specification of highly critical SW
and HW (e.g., safety or security critical systems) and (ii) the implementation of
reasoning systems, typically Artificial Intelligence systems, capable of computing
consequences from what is known.

6.5 Using a world model

Let us see how world models can be used in practice to represent and reason about
the world. We focus on logical world models.
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Fig. 6.4 Solving problems using a world model.

Intuition 6.6 (Solving problems using world models) The use of world models
can be characterized as a solution to the need of answering questions (in natural
language) or queries (in some formal language, e.g., SQL) about the world, thanks to
the exploitation of some reasoning mechanism which allow to compute consequences
from an existing body of knowledge about the world, i.e., a theory. This process is
usually articulated in three main tasks, as follows (see also Figure 6.4):

• Tell Data and Knowledge, from a system manager to the system. This requires
the specification of a language L𝑇 which can be used to specify the facts of the
world model being used.

• Ask a Question, from a user to the system, that is the specific questions / queries
about which the user wants to know the answers. This requires the specification
of a language L𝑄 used to write questions / queries.

• Answer a Question, from the system to the user, concerning the question which
was previously asked, written in a language L𝐴.

Some observations. Manager and user are usually different people. Usually the
process of providing the system with additional information is continuous in time.
Usually L𝑄 and L𝐴 are the same language L. Quite often the language L𝑇 is
different from both L𝑄 and L𝐴. Three are the main motivations for this: efficiency of
the reasoning, intuitiveness of the interaction with the user and, last but not least, the
need for L𝑇 to be most suited for the specification of the world model. For instance,
as the following will make clear, graph-based models are very well suited for the
specification of the world model, while, L𝑄 and L𝐴 are often in (some fragments
of) natural language. The translation across these languages is always automatic and
implemented inside the Q/A system.

Terminology 6.3 (Language of the world model) In the following we assume that
L𝑄 = L𝐴 = L𝑇 = LW , where LW is the representation language of the world
model.

Definition 6.11 (Interpretation and entailment) Let Ŵ =< L𝐴, D, I𝐴 > be a world
model. Let T ⊆ L𝐴 be a theory and M ∈ D a model of Ŵ . Let 𝑎 ∈ T be an assertion.
Then we write
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M |=L𝐴
𝑎 to mean I𝐴(𝑎) ∈ 𝑀

M |=L𝐴
T to mean I𝐴(𝑎) ∈ 𝑀 for all 𝑎 ∈ T (6.10)

and say that M entails T , or also that M entails 𝑎. The notation for the language L𝐴
is dropped when not needed.

Intuition 6.7 (World models, reasoning problems) But which questions and which
answers? All world models provide answers to four (basic) foundational questions
that we state below as reasoning problems. Let us assume that we have a world
model Ŵ defined intensionally, that is, Ŵ 𝑖 =< L𝑖

𝐴
, D𝑖 , I 𝑖

𝐴
> and that we have a set

{M} of models with M ⊆ D and a set theories T ⊆ L𝐴. Then we have the following
(notice that an assertion behaves like with one element):

Reasoning Problem 6.1 (Model checking) Given T and M, check whether M |= T .

Observation 6.18 (Model checking and theory correctness) Model checking is
the same as checking the correctness of a theory with respect to a model, as from
Definition 5.7. Juts need to check whether the assertions in T occur in M

Reasoning Problem 6.2 (Satisfiability) Given T , check whether there exists M such
that M |= T .

Observation 6.19 (Satisfiability) Any theory which does not represent negative
information, as it is most often the case, is satisfiable. If negative information is al-
lowed, it is sufficient to check whether the theory contains two facts which contradict
each other.

Observation 6.20 (Query answering in DBs) Query answering in DBs is a so-
phisticated form of model checking / satisfiability. The contents of the DB are the
reference world model, the query is the theory to be model checked, the answer is
the set of instantiations which make the input theory correct.

Reasoning Problem 6.3 (Validity) Given T , check whether for all M, M |= T .

Observation 6.21 (Validity) Apply model checking to all models M

Reasoning Problem 6.4 (Unsatisfiability) Given T , check whether there is no M
such that M |= T .

Observation 6.22 (Unsatisfiability) If negative information is allowed, heck for two
contradictory assertions.

Intuition 6.8 (An architecture for solving problems using world models) The
architecture supporting the use of world models, as specified in Intuition 6.6, is
depicted in Figure 6.4. We can identified two main components, as follows

• A world model (inference) engine which encodes the available data and knowl-
edge about the world and allows for minimal reasoning about them (see the
reasoning problems in Intuition 6.7);
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• An Interpretation (inference) engine implementing one or more of the reasoning
problems defined in Intuition 6.7.

Notice that the system is selected at the beginning. The choice depends on the
specifics of the problem be solved.

Observation 6.23 (World model inference engine) Reasoning in a world model
amounts to checking to whether a query (a single assertion or a set of assertions
as part of a theory) belongs to the model. More sophisticated queries, like the
ones implemented in relational DBs can be implemented where one can leave some
elements of the query unspecified. The inference engine will then find the proper s.

6.6 Exercises

Exercise 6.1 (ER Creation) Create an ER Model from this theory:

• There is a tree
• There is a banana
• The monkey is eating a banana
• The monkey is sitting on a tree*
• The monkey is scratching his head*

Exercise 6.2 (Complete and Correct?) Consider the sentences and the modeling
of the theory. Say whether it is complete, correct, complete and correct, incomplete,
or incorrect.

• A = "There is a banana"
• B = "There is a monkey"
• C = "There is a tree"
• D = "The monkey is eating a banana"

Exercise 6.3 (Complete and Correct?) Consider the sentences and the modeling
of the theory. Say whether it is complete, correct, complete and correct, incomplete,
or incorrect.
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• A = "There is a banana"
• B = "There is a monkey"
• C = "There is a tree"
• D = "The monkey is eating a banana"

Exercise 6.4 (Complete and Correct?) Consider the sentences and the modeling
of the theory. Say whether it is complete, correct, complete and correct, incomplete,
or incorrect.

• A = "There is a banana"
• B = "There is a monkey"
• C = "The monkey is eating a banana"
• D = "There is a tree"

Exercise 6.5 (Complete and Correct?) Consider the sentences and the modeling
of the theory. Say whether it is complete, correct, complete and correct, incomplete,
or incorrect.

• A = "There is a banana"
• B = "There is a monkey"
• C = "There is a tree"
• D = "The monkey is eating a banana"

Exercise 6.6 (Complete and Correct?) Consider the sentences and the modeling
of the theory. Say whether it is complete, correct, complete and correct, incomplete,
or incorrect.
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• A = "There is a banana"
• B = "There is a monkey"
• C = "There is a tree"
• D = "The monkey is eating a banana"





Chapter 7
Knowledge Graph - representing the world as a
graph

We represent world models Ŵ =< L𝐴, D, I𝐴 > as knowledge graph models for-
mally represented as K̂G =< LKG , D, I𝐾𝐺 >, namely as special types of labeled
graphs where each triple < node, edge, node >∈ LKG is an assertion 𝑎 ∈ LKG
describing a fact f ∈ D, with f = I𝐾𝐺 (𝑎). We call the theories in LKG , knowledge
graphs, and use the notation KG ⊆ LKG . Similarly to world models, we distinguish
among K̂G’s representing data, knowledge or mixed information.

Definition 7.1 (Entity, etype and mixed K̂G) A K̂G which is a data world model is
called entity graph model ( ˆEG). A K̂G which is a knowledge world model is called
etype graph model ( ˆET G). A K̂G which is a mixed world model is called etype
entity graph model ( ˆEEG). This terminology extends in the obvious way to all the
K̂G components, as well as to all KG’s and related models defined within a K̂G.

7.1 Domain

Let KG = D𝑖 =< E, {C}, {R} > be the stencil of a KG domain. Let us define its
components.

Definition 7.2 (Universe of Interpretation E of a KG) The universe of interpretation
E of a KG is defined as

E = ET ∪ DT (7.1)

with ET∩ DT = ∅, where ET = {ET} with ET = {e}, and DT = {DT} with DT = {v}. ET
is an entity type (etype) and DT is a datatype (dtype). The elements of etypes are
called entities, those of dtypes are called (data) values.

Observation 7.1 (Etype, dtype) In a KG, E is structured into a set of sub-universes,
i.e., etypes and dtypes. In abstract, each such sub-universe is just like a class C ∈ {C},
namely a subset of E. The fundamental difference is that etypes and dtypes are
types which, as in programming languages, are defined when defining LKG and are

63
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therefore application independent. As such, these types come with certain properties
and type operators builtin, most noticeably: a set of constructions for build the
elements of a type, a recognizer able to determine whether a certain element belongs
to a certain type, and an equivalence relation which allows to decide whether two
elements of that time are the same.

Example 7.1 (Etype) On example of etype is: Location, where intuitively a location
is an etype which spatially contains other entities. Locations usually do not change
their position with respect to their coordinate reference systems. Their space coor-
dinates are therefore an important proxy for deciding whether two locations (i.e.,
two entities belonging to the etype Location) are actually the same location. There
are many etypes which are special cases (sub-etypes) of Location, for instance:
Mountain, City, Street, Home, and many others. Other important etypes are:
Entity, the most general etype, the one which contains all elements in ET (its mot
noticeable property is that it has a name, thus implementing the requirement that all
entities must have a name); Event, whose most characterizing properties are its start
and times, Person, whose most characterizing properties are name, birth date, and
parents; and many others.

Observation 7.2 (Dtype) Dtypes have the same properties as etypes plus two more:
(i) the set of their members, i.e., their values, is predefined and (ii) the names of
values are the same as the values themselves (that is data values denote themselves,
thus for instance the number (properly called a numeral) 3.14 is the name of the
number 3.14).

Example 7.2 (Dtype) The following is a not exhaustive list of datatypes:

Dtype, Float, Integer, Boolean, String, SpaceTime, Identifier

where, Float, Integer, Boolean, String define, respectively the space of the
real numbers, integers, boolean values, strings. SpaceTime is the set of values used
to describe space and time. Thus, sub-dtypes of SpaceTime are GeoCoordinate,
Distance, XYCoordinate but also Date, Time, DateTime, and so on. Dtype
is the set of all the data values.

Observation 7.3 (Set of classes {C} of a KG) KG classes are world model classes “as
is", see Definition 6.1.

Definition 7.3 (Object and data binary relations {R} of a KG) The set of relations
{R} = {OR} ∪ {DR} is a set of binary relations of a KG such that

R ⊆ ET𝑠 × {ET𝑡 ∪ DT𝑡 } (7.2)

with ET𝑠 , ET𝑡 ∈ ET and DT𝑡 ∈ DT. If R is defined as:

R ⊆ ET𝑠 × ET𝑡 (7.3)

then we say that R is a binary object relation OR ∈ {OR}. If R is defined as:
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R ⊆ ET × DT (7.4)

then we say that R is an binary data relation DR ∈ {DR}.

Observation 7.4 (Arity of a relation R) In a KG there are only binary relations,
this allowing for the use of graph with single input and single output edges. The
representation of a world model with more complex edges requires its reformulation
to allow only for one-to-one edges.

Observation 7.5 (Arguments of a relation R) Differently from Definition 6.1, re-
lations take as arguments etypes and dtypes. See Observation 7.1 for an explanation.
We will later how to reintroduce relations taking as arguments used defined concepts.

Observation 7.6 (Object relation) Object relations are relations between enti-
ties thus depicting how entities interact. Thus, for instance, some examples are:
Near(Person, Tree), HasFather(Person, Person), TalksTo(Person,Dog).
Notice that Person, Tree, Person, Dog are etypes, rather than concepts.

Observation 7.7 (Data relation) Data relations are depict properties of entities
as such, independently of their interactions with other entities. Thus, for instance,
some examples are: Height(Person, Float), HasName(Person, String),
HasId(Entity, Identifier). Notice that Float, String, Identifier are
dtypes, rather than concepts, as it was the case in Section 5.

Observation 7.8 (Relation, cardinality) The cardinality of a relation can be: 1-to-1,
1-to-𝑛, 𝑚-to-𝑛 (where one of 𝑚 or 𝑛 can also be 0, this meaning that there can be
entities which do not belong to any relation).

Fig. 7.1 A Venn Diagram of an EG.
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Example 7.3 (Domain in an ˆEG, Venn Diagram) We represent the domains of EGs as
in Figure 7.1. Relations are represented as links between entities of the appropriate
etype to entities or values of the appropriate etype or dtype, respectively.

Example 7.4 (Domain in ˆET G, Venn Diagram) We represent the domains of ETGs
as in Figure 7.1. Relations are represented as links between etypes and etypes/ dtypes.

Fig. 7.2 A Venn Diagram of an ETG.

7.2 Assertional language

Let L𝑖KG = L𝑖
𝐴
=< E , {C}, {P} > be the stencil of the K̂G language L𝑖KG . The

definition of L𝑖KG follows directly from the definition of D𝑖 in Section 7.1.

Definition 7.4 (Concept) We have

{C} = ET ∪DT (7.5)

where ET = {ET } and DT = {DT }, with ET and DT being, respectively, (names
of) the etypes and dtypes in K̂G.

Definition 7.5 (Object and data property) We have

{P} = {OP} ∪ {DP} (7.6)
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where {OP} and {DP} are defined as follows:

{OP} ⊆ {ET } × {ET }
{DP} ⊆ {ET } × {DT } (7.7)

The elements of {OP} are called object properties, those of {DP} data properties.

Example 7.5 (EG) The EG of this example represents the domain depicted in Exam-
ple 7.3. The key observation is that the number of nodes corresponds to the number
of entities and values, while the number of edges corresponds to the instantiated
property values. Notice how 𝑛-to-𝑚 cardinality constraints allow for edges labeled
with the same property to come out of the same etype node. Note also how datatype
nodes are and can only be leaf nodes.

Fig. 7.3 Example of an EG representing information regarding humans

Example 7.6 (ET G) The ET G of this example represents the domain depicted in
Example 7.4. There is node per etype and data type. The ET G encodes some
meta-information, e.g., the cardinality constraints, which can drive and control the
instantation of the EG’s build starting from an ET G. Similarly to EG’s, dtype nodes
are leaves.
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Fig. 7.4 Example of an ETG representing information regarding humans

Observation 7.9 ( ˆEG, ˆET G, ˆEEG) In K̂G’s assertions are triples< node, edge, node >∈
L𝐴. In ˆEG’s nodes represent either entities with their etype or values with their dtype.
In ˆET G’s nodes represent etypes. ˆEEG’s have both types of nodes. Edges are labeled
by property names and represent relations. Edges from etypes/ entities to etypes/ enti-
ties represent object relations. Edges from etypes/ entities to dtypes/ values represent
data relations.

7.3 Interpretation function

The interpretation function of a K̂G is a direct mapping from the assertional language
L𝑖KG to the target domain of interpretation D. As it can be seen from the examples in
Section 7.1 and Section 7.2, there is an almost direct mapping between the language
and the domain of interpretation. In practice this means that, once the denotation
of the single language elements of LKG is clarified, and it is made sure that the
interpretation functions satisfies all the requirements (see Section 6.4), the intended
meaning of a KG can be directly read off the KG itself.

7.4 Knowledge graph

Knowledge graph models of the world K̂G =< L𝑖KG , D
𝑖 , I 𝑖

𝐾𝐺
> are a universal, in-

tuitive and self-explaining and computationally efficient representation of the world.
Once a K̂G is provided, it is sufficient to build your own favourite KG and all the
operations described in Section 6.5 are available.

Observation 7.10 (Types of knowledge graphs) As also discussed in Observation
6.3, the world models and knowledge graphs introduced so far have minimal express-
ibility. In practice, knowledge graphs are often enriched with further constructors
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which allow for the description of more complex facts. This is a perfectly fine op-
eration with the catch that one must be be careful in selecting the right trade-off
between complexity, intuitiveness and computational complexity of the selected
representation.

Observation 7.11 (From knowledge graphs to Logics) KG’s allow for an easy
embedding of in the most appropriate logic with the goal of enabling reasoning
about them. This will be the topic of the following sections.

7.5 Exercises

Exercise 7.1 (Create a set diagram) Consider this map of the Milan metro system:

Fig. 7.5 Milan underground map

What needs to be done:

• Extract relevant sets of objects: Lines, Stations, Intersections, Terminals, Num-
ber of stations, Colors, ...

• Instatiate elements of the domain: redLine, Cadorna, RHO fiera, Milan, Yellow
• Extract relevant relations: hasColor, belongsTo, isPartOf, nearTo, ...





Chapter 8
Logic - extensional representation

World models allow us to specify the main components needed to build a represen-
tation of the world, both extensionally and intensionally, to be later used for solving
problems. But this is not sufficient.

Observation 8.1 (Assertional languages, limitations) The description of domains
and models using only assertions is very limited. One would like to have more
flexible ways to describe them. One such example of richer linguistic description if
the natural language description of Figure 3.1 reported in Example 8.1

Example 8.1 (A rich linguistic description) Consider the analogical representation
in Figure 3.1. A good informal theory describing its contents can be articulated as
follows.

"Paolo, Stefania and Sofia, three great friends, are in a lovely park, surrounded
by the beauty of nature. They each have four adorable dogs with them, ready for a
leisurely walk. Paolo, with his infectious smile, holds the reins of four friendly dogs:
Argo, who seems to be the most energetic animal in the group; Luna, with dark fur
and bright eyes; Max, a friendly crossbreed; and Penny, a small, affectionate dog.
Stefania, with her passion for animals, enjoys her four faithful companions: Toby,
an affectionate dog with a constantly moving tail; Ginger, a sweet brown-and-white
dog with pointed ears; Rocky, rugged-looking but tender-hearted; and Luna, a cute
and playful puppy. Sofia, with her quiet air, walks elegantly followed by her four
adorable dogs: Balto, a thick-coated, pointy-eared dog; Rex, a protective and loyal
soul; Bella, an elegant and affectionate pooch; and Charlie, a friendly breed mix
with his tongue out, ready to make friends."

Being able to express linguistic descriptions like the one in Example 8.1 requires
extending substantially the expressibility of the languages used to describe world
models, the so-called representation languages. This forces us to shift from world
models to logics.

71
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8.1 Domain

The goal is to have a more expressive language, if compared to that of a world model,
for describing a domain of interpretation, leaving the latter unchanged. See Section
5.1.

Observation 8.2 (Domain, model) As from Definition 5.2, we have M = {f} ⊆ D,
where {f} is a fact, M a model and D a domain of interpretation.

8.2 Representation language

Definition 8.1 (Representation language, atomic formulas, complex formulas,
representation interpretation function) Let Ŵ =< L𝐴, D, I𝐴 > be a world model
with I𝐴 : L𝐴 → D. Let L𝑎 be such that L𝐴 ⊆ L𝑎 and such that there is a
representation interpretation function I : L𝑎 → D, with I𝐴 ⊆ I. Then, a
representation language L is defined as

L = {𝑤} = L𝑎 ∪ L𝑐, with L𝑎 ⊂ L𝑐 . (8.1)

where: I𝐴 is as in Definition 6.7, 𝑤 ∈ L is a (well-formed) formula, 𝑤 ∈ L𝑎 is an
atomic (well-formed) formula and 𝑤 ∈ L𝑐 is a complex (well-formed) formula.
In turn L𝑎 and L𝑐 are the language of atomic formulas and of complex formulas,
respectively.

Observation 8.3 (Language) Definition 8.1 of (representation language) formalizes
the informal notion of language provided in Intuition 2.6.

Observation 8.4 (Representation interpretation function) An interpretation rep-
resentation function I extends an interpretation function I𝐴, that is I𝐴 ⊆ I, in
the sense that it behaves the same as I𝐴 for all assertions 𝑎 ∈ L𝑎. Representations
interpretation functions are defined in Definition 8.4.

Observation 8.5 (Representation language and world model) Given a world
model Ŵ =< L𝐴, D, I𝐴 > the tuple Ŵ =< L, D, I > is not a world model for
two reasons. The first is that, as we will detail below, L𝑎 contains formulas (those
in L𝑎 − L𝐴) which cannot be interpreted by an interpretation function. The second
is that L𝑐 contains formulas (those in L𝑐 − L𝑎) for which there is no interpretation.
As discussed in Observation 8.1 and exemplified in Example 8.1, the overall goal is
to provide more flexibility in the way world models are described. This is achieved
two ways: via atomic formulas by extending the scope of interpretation functions,
still maintaining the same domain; and via complex formulas which elaborate lin-
guistically on the contents of the domain. Reading the text in Example 8.1 it is easy
to find out that a lot of that text only loosely relates to the picture in Figure 3.1.

Definition 8.2 Given a representation language L, a theory T is defined as
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T = {𝑤} ⊆ L (8.2)

Observation 8.6 (Theory) Definition 8.2 generalizes in the obvious way Definition
5.4

Observation 8.7 (What representation languages represent) As also highlighted
by Example 8.1, the existence of representation languages is motivated by the fact
there is information that cannot be easily and intuitively in a world model. To provide
some examples:

• Negative information. World models usually do not represent what is not the case
in the part of the world being represented. And there is indeed a very good reason
for his. Namely for anything being represented, there are indefinitely many things
that this anything is not. Thus for instance, you see a woman with blond hair and
various characteristics. Well, this woman, is not a man, not an animal, not with
black hair, not with red hair, not at home, not ..;

• Partial information. You perceive a person from a certain distance and you cannot
distinguish whether it is woman or a man;

• Consequential information. Since you see a woman, you know, as a consequence,
that it is also a person

• Equivalent information. Since you see yellow car with a plate on the roof, you
know it is a taxi

• ... and much more

Natural language descriptions like the one in Example 8.1 usually complement the
description of the world model with lots of additional information which, hope-
fully, will facilitate a correct, non-diverging, mental model of the world model being
describes. The take home message is that world models are direct linguistic repre-
sentations of mental analogical representations. As such they can hardly represent
information which is not explicitly encoded in an analogical representation but which
is, rather, about how observers relate to analogical representations

Observation 8.8 (What representation languages do not represent) Representa-
tion languages describe world models. But they do not capture the pragmatics of
how linguistic descriptions are used, nor the additional text used to enforce these
pragmatics, for instance: the fact that one likes what (s) sees, whether (s)he is upset,
whether (s)he is trying to convince someone else of the truthfulness of what (s)he is
describing, and much more.

Terminology 8.1 ((Representation) language and interpretation function) For
simplicity, whenever no confusion arises, in the following we talk of language and
interpretation function meaning representation language and representation
interpretation function, respectively.

Observation 8.9 (Atomic formulas) Assertions are atomic formulas, but some
atomic formulas are not assertions. The key property that atomic formulas share
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with assertions is that they are interpreted by an interpretation function. In other
words the meaning of atomic formulas, like that of assertions, can be computed
directly from the domain.

Definition 8.3 (Atomic assertions, complex assertions) Given a language L =

L𝑎 ∪ L𝑐, L𝑎 is defined as
L𝑎 = L𝐴 ∪ L𝐴𝐶 (8.3)

where: L𝐴 is an assertional language, that we also call a language of atomic asser-
tions, and L𝐴𝐶 is a language of complex assertions.

Observation 8.10 (Atomic formulas, knowledge and data operators) Atomic for-
mulas are distinguished based on whether they use operators which generate

Example 8.2 (Atomic formulas, knowledge operators) We can build complex atomic
formulas as follows. If C1 and C2 are concepts, then (following the notation ofLOD),
C1 ⊓ C2, is also a concept description, where C𝑖 can be an atomic assertion as well
as a complex assertion. Examples of assertions in this language are (";" is used to
separate different formulas):

"being a person" ; "having blond hair" ; "having a dog" ;
"having blond hair ⊓ "being a person" ;
"being a person" ⊓ "having blond hair" ⊓ "being a person"
...
. . . and so on, with indefinitely long complex atomic formulas. As from LOD is

that the interpretation of C1 ⊓C2 is the intersection of the interpretations of C1 and C2
Thus for instance the atomic concept in the second line denotes a person with blond
hair.

Example 8.3 (Atomic formulas, data operators) !!DA FARE!! FUNZIONI ESEM-
PIO CON "friendOf" e "nearTo"

Observation 8.11 (Complex formulas) Differently from atomic formulas, complex
formulas are not interpreted by an interpretation function. The idea is that complex
formulas allow to compose atomic formulas in longer complex articulations whose
meaning can be somehow deduced from the meaning of the constituent atomic
formulas via entailment, see below.

Example 8.4 (Complex formulas) We can build complex atomic formulas as follows.
If 𝐴1 and 𝐴2 are formulas, then (following the notation of LOP), 𝐴1 xor 𝐴2, is also
a formula where 𝐴𝑖 can be an atomic as well as a complex formula. Examples of
assertions in this language are (";" is used to separate different formulas):

"Sofia is a person" ;
"Sofia is a person" xor "Sofia is a person";
"Sofia is a person" xor "Paolo is a man" ;
("Sofia is a person" xor "Paolo is a man") xor "Paolo is a dog" ;

. . . and so on, with indefinitely long complex formulas. The intuition is that
𝐴1 xor 𝐴2 contains one and only one fact between the facts denoted by 𝐴1 and
𝐴2.
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Example 8.5 (Representation languages) The following are examples of representa-
tion languages:

1. All the natural languages, as used by people in their everyday life;
2. The language of arithmetics which describes how to perform plus and minus

operations on natural numbers. The language of arithmetic is a simplified natural
language which allows to mention, among others, numbers, variables, plus, minus,
times, and also to compose phrases in more complex phrases;

3. Relational database (DB) languages do not extend to representation languages;
4. Entity-relationship (ER) languages do not extend to representation languages.

Observation 8.12 (Graph-based languages and representation languages) Graph-
based languages (e.g., ER, or DB languages) in general are hard to extend to repre-
sentation languages due to the inherent difficulty of keeping intuitiveness, which is
the key feature of graph-based languages. Representation languages are most easily
representation in languages which have a sequential structure like that of natural
languages.

8.3 Interpretation Function

Definition 8.4 (Interpretation function) Given a language L = L𝑎 ∪ L𝑐, L𝑎 with
L𝑎 = L𝐴 ∪ L𝐴𝐶 . Let D be a domain. Then an Interpretation Function I for L𝑎 is
defined as

I : L𝑎 → D (I ⊆ L𝑎 × D) (8.4)

with
I = I𝐴 ◦ I𝐴𝐶 (8.5)

where
I𝐴𝐶 : L𝑎 → L𝐴
I𝐴 : L𝐴 → D

(8.6)

where: I𝐴 is an interpretation function for atomic assertions and I𝐴𝐶 is an
interpretation function for complex assertions. I𝐴 is as defined in Definition 5.5
and 6.8. Furthermore, we say that a fact f ∈ M is the interpretation of 𝑤 ∈ L𝑎, and
write

f = I (𝑎) = 𝑎I (8.7)

to mean that 𝑤 is a linguistic description of f. We say that f is the interpretation of
𝑤, or, equivalently, that 𝑤 denotes f.

Observation 8.13 (Interpretation function) Definition 8.4 extends Definition 5.5
to apply to atomic formulas which are not assertions. All considerations made in
Section 5.3 apply.
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8.4 Entailment

The meaning of representation languages is computed by reducing the meaning of
complex formulas to that of their constituent atomic formulas.

Definition 8.5 (Entailment relation) Let M ⊆ D and 𝑤 ∈ L be a formula. Then |=,
to be read "entails", is an entailment relation defined as

|= ⊆ D × L (8.8)

We also write
M |=L T (M |=L 𝑤) (8.9)

with {M} being a set of models M and T a set of formulas 𝑤. M |= T stands for M |= 𝑤

for all 𝑤 ∈ T . The notation for the language L is dropped when not needed. We say
that M entails 𝑤, or also that M entails T .

Definition 8.6 (Entailment of an atomic formula) If 𝑤 is an atomic formula then
we have

M |= 𝑤 if and only if I (𝑤) ∈ M (8.10)

Observation 8.14 (Entailment of atomic formulas) Entailment of atomic formulas
reduces to their interpretation.

Observation 8.15 (Entailment of complex formulas) Entailment of complex for-
mulas operates in two steps, similarly to how interpretation functions operate on
complex atomic formulas. In the first step, it reduces the entailment of a complex
formula to that of its component atomic formulas. In the second step it applies the
interpretation function o atomic formulas.

Observation 8.16 (Entailment relation) Interpretation is a function. Entailment
is a relation. It is a many-to-many relation. There may be multiple atomic and/or
complex formulas that denote a fact and, symmetrically, for the same formula there
maybe multiple facts entailed by it (the latter property being the one which makes
entailment a relation).

Observation 8.17 (Entailment relation and interpretation function) The key dif-
ference between interpretation being a function and entailment being a relation is
that with entailment we allow a formula (theory) to have multiple meanings, i.e., to
denote multiple (sets of) facts while interpretation does not allow for assertions to
be polysemous. The key motivation for this is that certain logics, in particular those
used to formalize decision making, e.g., LOP , allow to model partial knowledge,
that is, the fact that a person does not have complete knowledge about the world, a
situation which is intrinsic to human knowledge. In the case of partial knowledge, a
formula not present in the model can be (not always) indifferently taken as holding
or not holding See also Observation 8.18.
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Observation 8.18 (Entailment relation and interpretation function, atomic and
complex formula) One could think of distinguishing between atomic and complex
facts and say that they are denoted by atomic and complex formulas, respectively.
We do not take this step as there is not such thing as a complex fact. Facts are in the
world. What is described by a complex formula is not in the world, it is in the mind,
it is in how a person describes the world. Think, for instance, of a formula stating my
partial knowledge about the current situation, for instance the fact that on the table
there is a pen or a pencil (where I say this simply because I am not close enough and
I cannot see clearly). In the world there is no such thing as a pen or a pencil. On the
table there is either a pen or a pencil, given that I can clearly perceive that there is
only one object!

Definition 8.7 (Interpretation and entailment) If an interpretation I is a model
for a theory T (or a formula 𝑤), then we say I entails T (or 𝑤) and write

I |= T (I |= 𝑤) (8.11)

Example 8.6 (Complex formulas) Consider complex formulas as defined in Example
8.4, that is formulas of the form 𝐴1 xor 𝐴2, where 𝐴𝑖 is any formula. Let us assume
that 𝐴1 and 𝐴2 are atomic formulas. Then 𝐴1 xor 𝐴2 will be denoted by a model
M containing the denotation of 𝐴1 or by one containing the denotation of 𝐴2. In
formulas:

I (𝐴1) |= 𝐴1
I (𝐴1) |= 𝐴1 xor 𝐴2
I (𝐴1) ̸|= 𝐴1 xor 𝐴2
{I (𝐴1), I (𝐴2)} ̸|= 𝐴1 xor 𝐴2

The above example shows how many models may denote the same formulas (first
three equations) ad also how the same formula may denote multiple models (first
and last equation).

Entailment is how we formalize (human) reasoning.

Definition 8.8 (Logical entailment) Let M ⊆ D be a model and T1, T2 ⊆ L be two
theories and 𝑤 ∈ L a formula. Then we write

T1 |={M} T2 (T1 |={M} 𝑤) (8.12)

and say that T1 (logically) entails T2 (𝑤) with respect to the set of models {M} if

for all M ∈ {M}, if M |= T1 then M |= T2 (M |= 𝑤)

Terminology 8.2 (Logical entailment v.2, v.3) Sometimes Logical entailment is
defined as
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T1 |= T2 (T1 |= 𝑤) (8.13)

to mean all models M ⊆ D, that is

for all M ⊆ D, if M |= T1 then M |= T2 (M |= 𝑤)

Sometimes logical entailment is defined as

T1 |=T T2 (T1 |=T 𝑤) (8.14)

to mean all models that entail T , that is

for all M such that M |= T , if M |= T1 then M |= T2 (M |= 𝑤)

We will use all these definitions interchangeably, as they are different formalizations
of the same notion

Observation 8.19 (Logical entailment) Logical entailment must be read as follows.
Take one or more models M. Then keep all the models that entail T1 and discard the
others. If all such models entail also T2 then T1 entails T2. Notice the key role of T1
in forcing the discharge of the models where it does not hold. T1 forces the focus
only on a precise set of models.

Observation 8.20 (Logical entailment and reasoning) Logical entailment is the
formalization of the process of reasoning. We start with some assumptions, that we
model as one or more models, and see whether, under these same assumptions also
T2 holds. This is exactly how we intuitively reason. Notice that the vice versa does
not hold. Namely, if M ̸ |= T1 then we may have M |= T2 or M ̸ |= T2

Example 8.7 (Reasoning via entailment) One, for instance, would like to deduce
from the fact that if it rains then people don’t leave home and the fact that it rains, the
fact that people don’t leave home. Or that if my hair is blond then it is not black. Or
that, being near you excludes being far from you. And so on. Of course the kind of
conclusions that one can draw depend on the specifics of how the entailment relation
is define. The definition of logics which focus on particular types of reasoning will
be the topic of the following sections.

Terminology 8.3 (Entailment, axiom, theorem) Consider the following form of
entailment: T1 |= 𝑤. Historically the finite set of formulas 𝑤 ∈ T are called axioms
while its infinite logical consequences are called theorems. Axioms are guaranteed
to hold, to be some a priori information in our case, for instance, represented by a
K̂G theory.

Terminology 8.4 (Deductive reasoning) The type of reasoning implemented by
logical entailment is called deductive reasoning.

Terminology 8.5 (Reasoning, forward and backward, goal) Forward reasoning
is the reasoning process by which one tries to prove a theorem, so called the goal, by
deriving logical consequences from the axioms. Dually, with backward reasoning
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one starts for the goal and tries to reduce the holding of the goal to the holding of
the axioms, which are known to hold.

Observation 8.21 (Reasoning, forward and backward) At the start of art, in AI
all inference engines work backward, the reason being that in this way the inference
engine can exploit the information encoded in the structure of the goal.

Independently of the specifics of an entailment relation, and similarly to inter-
pretation functions, entailment relations are requested to satisfy a certain set of
principles which constrain how we want reasoning to behave. Let Γ = {𝑤}, Σ = {𝑤}
be sets of formulas and 𝑤, 𝑤1, 𝑤2 be formulas.

Intuition 8.1 (Reflexivity)
𝑤 |= 𝑤 (8.15)

Observation 8.22 (Reflexivity) Every fact entails itself. Knowledge asserts itself as
being knowledge. This is the essence of what knowledge is about.

Intuition 8.2 (Cut)

If Γ |= 𝑤1 and Σ ∪ {𝑤1} |= 𝑤2 then Γ ∪ Σ |= 𝑤2 (8.16)

Observation 8.23 (Cut) There are two ways to interpret cut. The first and most
common is that reasoning can be made efficient by dropping intermediate irrelevant
results. The second is transitivity, namely the fact that reasoning con be composed
by chaining independent reasoning sessions, something that people do all the time
during their everyday life.

Intuition 8.3 (Compactness)

If Γ |= 𝑤 then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= 𝑤 (8.17)

Observation 8.24 (Compactness) Consider infinity as the possibility of describing
another fact in the process of reasoning. Thus, for instance, natural numbers are
infinite and, no matter how many numbers have already been used so far, it is
always possible to provide a new one. Compactness says that logical consequence
must be computed using a finite set of assumptions. Logical consequence for an
hypothetically infinite set of formulas is not a behaviour that is considered of interest.

Intuition 8.4 (Monotonicity)

If Γ |= 𝑤 then Γ ∪ Σ |= 𝑤 (8.18)

Observation 8.25 (Monotonicity) Monotonicity implements a fundamental and in-
tuitive property of knowledge, for instance of scientific knowledge. If knowledge
increases then what can be derived from it via reasoning can only increase. At most
it can stay the same if the new piece of knowledge was implied by what is already
known.
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Intuition 8.5 (NonMonotonicity)

Γ |= 𝑤 and Γ ∪ Σ ̸ |= 𝑤 (8.19)

Observation 8.26 (NonMonotonicity) Despite its intuitiveness, monotonicity is a
property which most often does not hold. This is extensively the case with com-
monsense reasoning, a topic extensively studied in AI. How many times getting to
know something new has forced us to change our mind? The historical AI example
of commonsense nonmonotonic reasoning is that the belief that all birds fly can be
defeated by the fact that penguins are birds and they do not fly. Scientific knowl-
edge is full of examples where prior knowledge was defeated by later evidence, and
lots of theories in the philosophy of science have been built about it. The standard
example of the nonmonoticity of scientific knowledge is the discovery that it is the
earth rotating around the sun, and not vice versa. From a practical point of view all
the logics which formalize mathematical reasoning and used in formal methods, as
applied to, e.g., programming languages, are monotonic, while most logics defined
in AI are nonmonotonic. Negation by failure, as implemented in relational DBs is
nonmonotonic.

8.5 Logic

The journey is complete. We have only to pull everything together.

Observation 8.27 (The roles of D, L, I, |=, M, T ) The definitions provided in the
previous sections can be summarized in the following figure.

𝑎 T L𝑎

f M D

I

∈ ⊆

|= I

∈ ⊆

(8.20)

with L = L𝑎 ∪ L𝑐.

Compare also with Figure 5.7 for world models. In Equation (8.20), D defines the
set of facts f of potential interest, L𝑎 the set of assertions 𝑎 of potential interest, L
the formulas 𝑤 that we can use to describe the facts in M, |= the conditions under
which any 𝑤 ∈ L is entailed by M, M the set of facts we are focusing on and, finally
T is the theory describing M. The key difference from the corresponding world
model equation, is that here the relation between model has been extended from the
interpretation function to the entailment relation.

Definition 8.9 (Logic) Take any representation as from Equation (8.20). Then

L̂ =< L, D, I, |=> (8.21)

is a logic.
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Observation 8.28 (Logic) In Equation (8.20) the components of a logic, i.e., D, L,
I, |=, define the general rules which are followed when defining mechanisms for rep-
resenting and reasoning about world models, i.e., representations. They are defined
a priori, extending world models, usually by experts in knowledge representation
and logic, as a general tools to be used by practitioners. They provide the general
modeling and reasoning infrastructure which allows to represent and reason about
representations of real world problems. They also provide the mechanisms by which
any two representations can be compared and possibly even merged. Software prac-
titioners usually study these models during some CS or AI classes and they use them
as is when developing systems; think for instance of the large usage of ER and UML
models, and also of logics.

Observation 8.29 (Logic and World model) If L̂ =< L, D, I, |=> and L = L𝐴 then
L̂ = Ŵ with Ŵ =< L𝐴, D, I𝐴 >. In fact the entailment relation collapses into the
interpretation function, see Equation (8.11).

Observation 8.30 (From mental representations to world models to logics)
World models provide general mechanisms for generating non-ambiguous repre-
sentations, i.e., theories of mental representations. Logics provide the mechanisms
for reasoning about theories and the models they describe.

Observation 8.31 (Defining a model via a theory) The most common way to model
the world is by defining a set of assertions, what we call a theory. In other words, we
construct a model M by selecting any subset T of L. This is the common approach
when the task is that of representing from scratch a given part of the world which is
of interest.

However, sometimes, one is given a predefined theory T and a predefined model
M and is asked how they relate. In which case we have the following.

Definition 8.10 (Correctness and completeness of a theory T with respect to a
model M) Let L̂ =< L, D, I, |=> be a logic. Let T ⊆ L and M ⊆ D be a theory and a
model, respectively. Then we have two possible situations, as follows

• Correctness: M |= T , in which case we say that T is correct with respect to M, or
that M is a model for 𝑇 ;

• Completeness: If, for all facts f ∈ M there is a formula𝑤 ∈ L𝑎 such that I (𝑤) = f,
in which case we say that T is complete with respect to M

The notions of incorrectness and incompleteness are defined in the obvious way





Chapter 9
Logic - intensional representation

We need to provide the specifics of how to compute entailment, starting from an
account of how L and I are constructed

9.1 Domain

The goal is to have a more expressive language, if compared to that of a world model,
for describing a domain of interpretation, leaving the latter unchanged. See Section
6.1.

9.2 Representation language

Definition 9.1 (Language, intensional representation) Let L = L𝑎 ∪ L𝑐 be a
language. Then its intensional representation is

L𝑖 =< L𝑖𝑎,L𝑖𝑐 > (9.1)

where L𝑖𝑎 is the language of atomic formulas, intensionally defined and L𝑖𝑐 is the
language of complex formulas, intensionally defined.

L𝑖𝑎 and L𝑖𝑐 are also pairs.

Definition 9.2 (Language of atomic formulas, intensional representation) Let
L𝑖 =< L𝑖𝑎,L𝑖𝑐 > be a language intensionally defined. Then the intensional repre-
sentation of L𝑖𝑎 is

L𝑖𝑎 =< A𝑎, {FR}𝑎 > (9.2)

where: A𝑎 is the alphabet of L𝑎 and {FR}𝑎 is the set of formation rules for L𝑒𝑎
with

A𝑎 =< E , {C}, {R} >

83
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L𝑒𝑎 = {𝑤 : 𝑤 ∈ C({FR}𝑎,A𝑎)}

where: E is a set of (names of) entities, {C} is a set of concepts, where a concept
is a name of a class, {P} and a set of properties, where a property is a name of a
relation and, finally, C({FR}𝑎,A𝑎) is the transitive closure of {FR}𝑎 on A𝑎.

Definition 9.3 (Formation rule) We restrict ourselves to languages with context-
free grammars. Accordingly, we take {FR}𝑎 = {R𝑎}, where each formation rule
R𝑎 has form

<expression> ::= –expression–

where, following BNF notation1:

• <expression> is a nonterminal expression. Nonterminals are enclosed within
<>;

• Symbols that do not appear on the left side of a rule are called terminals;
• –expression– consists of one or more sequences of either terminal or nonter-

minal symbols;
• ::= allows for <expression> to be replaced with a sequence occurring in
–expression–;

• Sequences in –expression– are separated by the bar "|", indicating choice in the
substitution.

Observation 9.1 (Formation rule) A generic formation rule R𝑎 can be visualized
as

<NT> ::= <NT1> | ... | <NT1> | T1 | ... | T𝑚

with the possibility of no occurrences of terminal or nonterminal sequences.

Observation 9.2 (Transitive closure) C({FR}𝑐,L𝑎) is the minimal set of formulas
which can be obtained by recursively applying the rules of {FR}𝑐 to their own
results, starting from L𝑎. Atomic formulas are black boxes for {FR}𝑐 in the sense
that the rules in {FR}𝑐 can compose them into complex formulas but cannot change
their internal structure.

Observation 9.3 (Infinity of the transitive closure) Formation rules, as from Defi-
nition 9.3, are recursive, see also Observation 9.1 in the sense that there are might be
noterminals which appear both on the left and on the right of a production rules. This
opens up the possibility of indefinitely long elements. That is the set C({FR}𝑐,L𝑎)
in the case of recursive production rules, as it is most often the case, is infinite.

Observation 9.4 (Alphabet) The alphabet A𝑎 is infinite.

Example 9.1 (Language of atomic formulas, knowledge generation rules) Consider
the language defined in Example 8.2 which allows for atomic complex formulas of
shape C1 ⊓ C2 where C𝑖 is a concept. The BNF generating this language consists of
the following two formation rules:

1 See https://it.wikipedia.org/wiki/Backus-Naur_Form for details.
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<awff> ::= <concept>
<awff> ::= <awff> ⊓ <awff>

where <concept> is non-terminal symbol which stands for any element C of the
alphabet. ⊓ is a terminal symbol which, as such, cannot be further decomposed.

Example 9.2 (Language of atomic formulas, data generation rules) !!!!!!!TOBEDONE!!!!!!!!!!!!!!!!!

Observation 9.5 (Application of formation rules, generation, recognition) For-
mation rules can be applied for two reasons. The first, as it is the case in Example
9.1 and Example 9.2, is in the process of generation of the closure; the second is in
the process of recognition of whether e certain input formula belongs to the closure.
The two sets of formation rules, while capture the same intuition, work in opposite
directions, the first starting from terminals and developing more and more complex
elements of the closure (generating, in the case of recursive production rules an
infinite set), the second decomposing the input, complex, input down to the terminal
elements. Failure in this process means that the input does not belong to the closure.
This process will be used below in the definition of the interpretation function and
the entailment relation.

Example 9.3 (Formation rules, generation and recognition) The following two for-
mation rules for closure generation

<awff> ::= <concept>
<awff> ::= <awff> ⊓ <awff>

can be rewritten as the following recognition rules for the same closure

W(<awff>) ::= W(<concept>)
W(<awff1> ⊓ <awff2>) ::= W(<awff1>) and W(<awff1>)

W checks the well-formedness of the input formula.W returns true is the recognition
process terminates properly, false otherwise.

Definition 9.4 (Language of complex formulas, formation rules) Let L𝑖 =<

L𝑖𝑎,L𝑖𝑐 > be a language intensionally defined. Then the intensional representa-
tion of L𝑖𝑐 is

L𝑖𝑐 =< L𝑒𝑎, {FR}𝑐 > (9.3)

where {FR}𝑐 is the set of formation rules for L𝑒𝑐 with

L𝑒𝑐 = {𝑤 : 𝑤 ∈ C({FR}𝑐,L𝑒𝑎)}

where: L𝑒𝑎 is as from Definition 9.2 and, C({FR}𝑐,L𝑒𝑎) is the transitive closure of
{FR}𝑐 on L𝑎.

Example 9.4 (Language of complex formulas, intensional representation) Consider
the language defined in Example 8.6 which allows for atomic complex formulas of
shape 𝐴1 xor 𝐴2 where 𝐴𝑖 is any formula. The BNF generating this language consists
of the following two formation rules:
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<wff> ::= <awff>
<wff> ::= <wff> xor <wff>

where <awff> is a non-terminal symbol which can be grounded into any atomic
formula in L𝑎.

9.3 Interpretation function

Let us proceed with the intensional definition of the interpretation function.

Definition 9.5 (Interpretation function, intensional representation) LetL = L𝑎∪
L𝑐 be a language with L𝑎 = L𝐴 ∪L𝐴𝐶 . Let the interpretation function I : L𝑎 → D
be defined as I = I𝐴 ◦ I𝐴𝐶 , with I𝐴𝐶 : L𝑎 → L𝐴 and I𝐴 : L𝐴 → D (Definition
8.4). Then, the intensional representation of I is

I 𝑖 =< L𝑎, {FR}I > (9.4)

where {FR}I is the set of formation rules for I𝑒 with

I𝑒 = {< 𝑤, f >: 𝑤 ∈ L𝑎, f ∈ D, < 𝑤, f >∈ C({FR}I ,L𝑎)}

where C({FR}I ,L𝑎) is the transitive closure of {FR}I over L𝑎.

Observation 9.6 (Interpretation function, recognition rule) The recognition rules
for the interpretation function RI ∈ {FR}I are defined as follows:

I𝐴𝐶 (T) ::= I𝐴(<T>)
I𝐴𝐶 (<NT>) ::= I𝐴𝐶 (<NT1 >) | ... | I𝐴𝐶 (<NT1>)

(9.5)

where <NT> are nonterminal symbols for I𝐴𝐶 , T are terminal symbols for I𝐴𝐶 , and
<T> are nonterminal symbols for I𝐴.

Observation 9.7 (Interpretation function, recognition rules) In the recognition
rules of the interpretation function, I𝐴𝐶 applies to nonterminals, while I𝐴 applies
to terminals of I𝐴𝐶 , which are actual nonterminals for I𝐴. To this extent, see the
first production rule in Equation (9.5), where the same expression T gets transformed
from terminal of I𝐴𝐶 to nonterminal of I𝐴.

Example 9.5 (Interpretation function, recognition rules, data operators)
!!!!!!!TODO!!!!!!!!!!!!!

Example 9.6 (Atomic formulas, recognition rules, knowledge operators) Consider
the set of formulas defined in Example 8.2, which are of the form C1 ⊓ C2, where C𝑖
can be an atomic assertion as well as a complex assertion. Consider the formation
rules generating them. We formalize the intuition that C1⊓C2 denotes the intersection
of the interpretations of two atomic assertions as follows:
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I𝐴𝐶 (<concept>) ::= I𝐴(<concept>)
I𝐴𝐶 (<awff> ⊓ <awff>) ::= I𝐴𝐶 (<awff>) ∩ I𝐴𝐶 (<awff>)

which can be used to implemented the following sequence of rewrites

I (C1 ⊓ C2) = I𝐴𝐶 (C1 ⊓ C2) = I𝐴(C1) ∩ I𝐴(C2) = C1 ∩ C2

Thus, for instance,

I ((person ⊓ woman) ⊓ dog) =

I𝐴𝐶 ((person ⊓ woman) ⊓ dog) =

I𝐴𝐶 (person ⊓ woman) ∩ I𝐴(dog) =
I𝐴(person) ∩ I𝐴(woman)) ∩ dog =

(person ∩ woman) ∩ dog =

woman ∩ dog = ∅

where we have assumed to know that women are persons and dogs are disjoint from
persons.

Observation 9.8 (Application of the interpretation formation rules) Following
up on what mentioned in Observation 6.11, Equation (6.7) shows how I is applied
recursively by applying it to the components of its input assertion till assertions.
In this process its components are applied as needed, that is, I𝑒 to entities, I𝐶 to
concepts and I𝑃 to properties. Example 9.6 shows (second line) how the process
mentioned in Observation 6.11 generalizes to complex atomic formulas. The general
idea is that I𝐴𝐶 gets applied till it gets to the single elements of the alphabet where,
then, the proper component interpretation function is applied.

Observation 9.9 (Nesting of formation rules) The process highlighted above can
be nested at any level. In fact I𝐴 could be again a set of formation rules allowing for
more refined complex atomic rules and so on, for any level of nesting. This allows
for the generation of more and more complex manipulations of world models.

Example 9.7 (Atomic formulas, formation rules, data operators) !!DA FARE!! FUN-
ZIONI ESEMPIO CON "friendOf" e "nearTo"

9.4 Entailment

Let us proceed with the intensional definition of the entailment relation.

Definition 9.6 (Entailment relation, intensional representation) Let M ⊆ D be a
model and T ⊆ L a theory. Let the entailment relation be defined as

|= ⊆ M × T

as from Definition 8.5. Then, the intensional representation of |= is
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|=𝑖=< L, D, {FR} |= > (9.6)

where {FR} |= is the set of formation rules of |=𝑒, with

|=𝑒 = {< f, 𝑤 >: f ∈ M, 𝑤 ∈ L, < f, 𝑤 >∈ C({FR} |=, D,L)}

where C({FR} |=,L) is the transitive closure of {FR} |= over L.

Definition 9.7 (Entailment relation, formation rule) A formation rule for the en-
tailment relation R |= ∈ {FR} |= is defined as:

M |= T ::= I (<T>)
M |= <NT> ::= M |= <NT1 > | ... | M |= (<NT1>

(9.7)

where <NT> are nonterminal symbols for |=, T are terminal symbols for |=, and <T>
are nonterminal symbols for I.

Observation 9.10 (Entailment relation, formation rules) Read Observation 9.7.
The same considerations apply, mutatis mutandis.

Example 9.8 (Entailment) Take L𝑎, D, I as from Example 9.5. Take L = L𝑎 ∪L𝑐 to
be the representation language defined in 9.4 (with L𝑎 being the same as in Example
9.5), where the formation rules for L𝑐, are as follows (as from Example 9.4 reported
here for completeness):

<wff> ::= <awff>
<wff> ::= <wff> xor <wff>

Then we define the entailment relation with the following recognition rules:

M |= <wff> ::= I (<awff>)
M |= <wff1> xor <wff2> ::= M |= <wff1> and M ̸ |= <wff2> |

M ̸ |= <wff1> and M |= <wff2>

We have the following examples (where 𝑎, 𝑎𝑖 are atomic formulas).

M |= 𝑎 if I (𝑎) ∈ M
M ̸ |= 𝑎 if I (𝑎) ∉ M
M |= 𝑎1 xor 𝑎2 if I (𝑎1) ∈ M and I (𝑎2) ∉ M | I (𝑎1) ∈ M and I (𝑎2) ∉ M
M |= {𝑤1, 𝑤2} if M |= 𝑤1 and M |= 𝑤2

Observation 9.11 (Theory) The notion of theory, as from Definition 8.2, and its
characterization as a set of axioms, as from Terminology 8.3 does not capture the
idea of a theory consisting all theorems, that is all the statements which are decided
to hold as part of the closure over the entailment formation rules.

Definition 9.8 (Theory, finite presentation) A theory is a set of formulas closed
under the logical consequence, that is T is a theory if and only if T |= 𝑤 implies



9.5 Logic 89

that 𝑤 ∈ T . The set of axioms T0 from which T is generated via entailment is called
a finite presentation of T .

The two notions of theory are used interchangeably. But not all theories can be
generated from a finite set of axioms.

Definition 9.9 (Theory, finite axiomatization) A theory T is finitely axiomatizable
if it can be generated from a finite set of axioms.

9.5 Logic

Let us see how to use logic in practice, and how they extend what can be done with
world models, as from Section 6.5.

Definition 9.10 (Logic, intensional representation) Let Ŵ 𝑖 =< L𝑖
𝐴
, D𝑖 , I 𝑖

𝐴
> be a

world model with D𝑖 =< E, {C}, {R} >. Then, let

L̂ =< L, D, I, |=>,

be a logic defined for the same domain of interpretation D𝑖 of Ŵ 𝑖 . Then, the inten-
sional representation L̂𝑖 of L̂ is defined as:

L̂𝑖 =< L𝑖 , D𝑖 , I 𝑖 , |=𝑖>, with L𝑖 =< L𝑖𝑎,L𝑖𝑐 > (9.8)

and
L𝑖𝑎 = < A𝑎 , {FR}𝑎 >

L𝑖𝑐 = < L𝑒𝑎 , {FR}𝑐 >

I 𝑖 = < L𝑒𝑎 , {FR}I >

|=𝑖 = < L𝑒 , {FR} |= >

L̂𝑖 ,L𝑖𝑎,L𝑖𝑐, I 𝑖 , |=𝑖 are the stencil of the logic L̂, of the language of atomic formulas
L𝑎, of the language of complex formulas L𝑐, of the interpretation function I and of
the entailment relation |=, respectively.

Terminology 9.1 (Data, knowledge, mixed) We talk of data, knowledge and mixed
logics, theories and models with the obvious meaning.

Observation 9.12 (Logic, design constraints and choices) The Logic stencil L̂𝑖 is
all we need in order to implement a logic and use it to perform reasoning. But there
are constraints to be kept in mind, in particular, those concerning the interpretation
function and also the entailment relation. There are also important choices to be
made, in particular about which world model and logic should be selected, how to
implement them, and how to integrate them.

Observation 9.13 (Defining a logic) The definition of a logic is articulated in the
following steps:
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1. Define A𝑎. This provides the language for making assertions about the facts in
the world. In the following A𝑎 will be defined in terms of a K̂G.

2. Define L𝑖𝑎 and, specifically, {FR}𝑎. This provides the language for producing
complex descriptions of the facts in the world.

3. Validate the definition of A𝑎 and L𝑖𝑎. This is done via the definition of I 𝑖
where the goal is to make sure that the notation used A𝑎 and L𝑖𝑎 is intuitive
and representative of the fact of the world and that all the constraints on I 𝑖 are
satisfied.

4. Define L𝑖𝑐. This provides the language for building complex descriptions about
the facts in the world, as represented in the K̂G. This is usually done using a
logical language which formalizes some targeted fraction of natural language.

5. Define |=𝑖 , namely the rules for reasoning, based on the definition of L𝑖𝑐. In par-
ticular the key idea is that the definition of entailment is compositional, following
the compositionality of the generation rules for L𝑖𝑐. !!THIS POINT MUST BE
MADE MORE GLOBAL ... CHECK!!

Given a logic, one can use it to reason about the world. This is the topic of the next
section.

9.6 Using a logic

Logics allow to do complex reasoning about world models. Let us see how this can
be implemented in practice.

Intuition 9.1 (Solving problems using logic) This is the quite the same as with
world model. Seen from the outside, the user will see no difference, only an increase
in reasoning power. See Intuition 6.6

Terminology 9.2 (Language of the world model, language of reasoning) In the
following we assume thatL𝑄 = L𝐴 = LW , whereLW is the representation language
of the world model, and that L𝑇 = LR, where LR is the representation language of
reasoning. Notice that, compared to the Terminology 6.3, we assume the existence
of LR and that LW ≠ LR. This is motivated by the fact that the task of representing
the world in the world model and that of reasoning about the world are usually
implemented by two independent systems with a third system explicitly dedicated to
bridging the two systems and translating LW into LR. See also Intuition 9.3

Intuition 9.2 (Logics, reasoning problems) But which questions and which an-
swers? All logics, independently of the specifics of their definition, as from Def-
inition 9.10, provide answers to six foundational questions that we state below as
reasoning problems. Let us assume that we have the stencil L̂𝑖 =< L𝑖 , D𝑖 , I 𝑖 , |=𝑖>
and that we have a set {M} of models with M ⊆ D and a set theories T ⊆ L𝐴. Then
we have the following:

Reasoning Problem 9.1 (Model checking) Given T and M, check whether M |= T .
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Reasoning Problem 9.2 (Satisfiability) Given T , check whether there exists M such
that M |= T .

Reasoning Problem 9.3 (Validity) Given T , check whether for all M, M |= T .

Reasoning Problem 9.4 (Unsatisfiability) Given T , check whether there is no M
such that M |= T .

Reasoning Problem 9.5 (Logical consequence) Given T1, T2 and a set of reference
models {M}, check whether 𝑇1 |={M} 𝑇2.

Reasoning Problem 9.6 (Logical equivalence) Given T1, T2 and a set of reference
models {M}, check whether 𝑇1 |={M} 𝑇2 and 𝑇2 |={M} 𝑇1.

Observation 9.14 (logics vs world models) World models (see Intuition 6.7) feature
the first four reasoning problems of logic, stated exactly in the same way. The key and
fundamental difference is that in world model entailment reduces to set inclusion,
that is, to checking whether the interpretation of a formula belongs to a model
(see Definition 6.11). Though much simpler than logical reasoning, it provides the
baseline on top of which logical reasoning is implemented.

Observation 9.15 (Reasoning problems, logic dependence) As the following sec-
tions will make clear, different logics feature different and specific instances of the
reasoning problems defined in Intuition 9.2. This is in fact the main reason why there
are multiple world models. Despite the fact that they all solve the same six founda-
tional problems, they do it in specific contexts and problem spaces for which they
are tuned. Showing and discussing these specifics will be the topic of the following
sections.

Fig. 9.1 Solving problems using logics.
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Intuition 9.3 (An architecture for solving problems using logic) The architecture
supporting the use of logic, as specified in Intuition 9.1, is depicted in Figure 9.1.
We can identified three main components, as follows

• A world model which encodes the available data and knowledge about the world
and allows for minimal reasoning about them (see the reasoning problems in
Intuition 6.7);

• An logic inference engine implementing one or more of the reasoning problems
defined in Intuition 6.7;

• A representation language translation engine implementing the bidirectional
translation between LW and LR.

Some observations. The world model as well as the reasoners are selected at the
beginning, before the system is put in operation. The choice of which wold model
stencil and which logic stencil depends on the specifics of the problem be solved.
Observation 9.18 below describes the issues and trade-offs which must are taken
into account when performing the choice of the logic stencil.

Observation 9.16 (Decision, procedure, logic inference engine) A decision pro-
cedure is an algorithm which, for a certain logic, solves one of the six foundational
problems specified in Intuition 6.7. An inference engine is usually a decision proce-
dure with two added features:

• it may solve more than one reasoning problems, exploiting the fact that, in certain
logics (not all), the solution of a reasoning problem can be reduced to the solution
of another reasoning problem;

• it implements various heuristics whose main goal is to speed-up the computation
time.

Observation 9.17 (Representation language translation engine) As it will be dis-
cussed in detail the work on inference engines is most advanced for certain logics
where there exist very fast, off-the-shelf- open source implementations. In these
cases the translation engine is used to rewrite a reasoning problem stated in a source
world model or logic to a reasonig problem stated in the target logic.

Intuition 9.4 (The process of using logic) Logics are used according to the Tell,
Ask, Reason, Answer pattern defined in Intuition 9.1. However, prior to that, the
system depicted in Figure 9.1 must be specified (and implemented). The specification
pattern for this to happen is as follows

1. Selection of the world model W and specifically the representation Language
LW and corresponding interpretation function. This, in turn, amounts to the
following three steps:

• Selection of the assertional language L𝐴 (and interpretation function) used
to specify the domain of interpretation;

• Selection of the language of atomic formulasL𝑎 (and interpretation function)
used to specify atomic formulas and the corresponding set of formation rules
R𝑎;
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• Selection of the representation language L used to specify formulas and the
corresponding set of formation rules R𝑎;

2. Selection of the entailment relation |=, which amounts to the following two
steps:

• Selection of the reasoning representation language LR;
• Selection of the Interpretation function for LR;
• Selection of the consequence relation |=LR used to implement reasoning and

the corresponding reasoning problems;
• Selection of the inference engine used to solve the target reasoning problems.

3. Selection of the translation procedure used to translate assertions 𝑎 ∈ L𝑎
describing the facts stored in the world model to the formulas 𝑤 ∈ L of the
language of the reasoner.

4. Selection of the inference engine.

Observation 9.18 (Logic, selection trade-offs) Any logics can be characterized by
two main parameters:

• Expressivity, that is, the level of detail at which the problem is expressed, de-
pending on the syntax of the language of the logic;

• Computational efficiency, that is how much it costs, in terms of space and time,
to reason and answer queries in that language.

More expressivity allows for a more refined and precise modeling of the problem
but it also generates longer and more complicated formulas. There is a crucial trade-
off in that, the more expressive a logic is, the less computationally tractable it is.
The modeler must find the right trade-off between expressiveness and computational
complexity. Here the choice of the representation languageL =< L𝑎,L𝑐 > is crucial.
The computational complexity of both L𝑎 and L𝑐 ranges in fact from polynomial
to exponential and beyond. There is also an issue of (un)decidability, namely the
possibility for the reasoner, on certain queries, to get into an infinite loop, never
terminate and, therefore, never return an answer. However this issue, while very
relevant in mathematical logic and theory of computation, has no practical relevance
here, the main reason being that in AI the domains of interpretation are (almost)
always finite, and this guarantees termination, also in the case of LOL, on of the
most expressive logic that we consider.

9.7 Exercises

TODO





Solutions

Exercises of Chapter 5 & 6

Solution 6.1 (ER Creation). We can create an ER diagram from the theory in this
way:

[H]

Solution 6.2 (Complete and Correct?). The model is incorrect respect to the
theory.

Solution 6.3 (Complete and Correct?). The model is correct respect to the theory.

Solution 6.4 (Complete and Correct?). The model is incomplete respect to the
theory.

Solution 6.5 (Complete and Correct?). The model is complete respect to the
theory.

Solution 6.6 (Complete and Correct?). The model is correct and complete respect
to the theory.

95



96 Solutions

Exercises of Chapter 7

Solution 7.1 (Create a set diagram). Using set theory to represent the Milan subway
we have the following diagram:

[H]

Exercises of Chapter 8 & 9

TODO
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